1
|
Angel-Velez D, De Coster T, Azari-Dolatabad N, Fernández-Montoro A, Benedetti C, Pavani K, Van Soom A, Bogado Pascottini O, Smits K. Embryo morphokinetics derived from fresh and vitrified bovine oocytes predict blastocyst development and nuclear abnormalities. Sci Rep 2023; 13:4765. [PMID: 36959320 PMCID: PMC10036495 DOI: 10.1038/s41598-023-31268-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
Embryo development is a dynamic process and critical stages may go unnoticed with the use of traditional morphologic assessments, especially the timing of embryonic divisions and aberrant zygotic cleavage patterns. Bovine embryo development is impaired after oocyte vitrification, but little is known about the underlying morphokinetic behavior. Here, bovine zygotes from fresh (n = 708) and vitrified oocytes (n = 182) were monitored by time-lapse imaging and the timing and nature of early blastomere divisions were modeled to find associations with blastocyst development at day 8. The predictive potential of morphokinetic parameters was analyzed by logistic regression and receiver operating characteristic curve analysis to determine optimal cut-off values. Lag-phase was highly correlated with embryo development. Remarkably, 100% of zygotes that reached the blastocyst stage showed a lag-phase. Fast first cleavage increased the chance of blastocyst development to 30% with a cut-off of 32 h and 22 min. Aberrant zygotic cleavage events, including multipolar division, unequal blastomere sizes, and membrane ruffling resulted in decreased blastocyst development. Multipolar division leads to uneven blastomeres, which was associated with anuclear and multinuclear blastomeres, indicating genome segregation errors. Moreover, we described for the first time morphokinetics of embryos derived from vitrified bovine oocytes. Vitrification severely affected blastocyst development, although lower cryoprotectant concentration in equilibration solutions seems to be less detrimental for embryo yield. Impaired development was linked to slow cleavages, lower lag-phase incidence, and increased early embryonic arrest. Typically, less than 15% of the embryos produced from vitrified oocytes reached more than eight cells. Interestingly, the rate of abnormal first cleavage events was not affected by oocyte vitrification. In conclusion, time to first cleavage, the presence of a lag-phase, and the absence of aberrant zygotic cleavage were the best predictors of bovine blastocyst development for both fresh and vitrified oocytes.
Collapse
Affiliation(s)
- Daniel Angel-Velez
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium.
- Research Group in Animal Sciences - INCA-CES, Universidad CES, Medellin, Colombia.
| | - Tine De Coster
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Nima Azari-Dolatabad
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Andrea Fernández-Montoro
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Camilla Benedetti
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Krishna Pavani
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Gent, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction, and Population Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
The Improvement and Clinical Application of Human Oocyte In Vitro Maturation (IVM). Reprod Sci 2021; 29:2127-2135. [PMID: 34076873 DOI: 10.1007/s43032-021-00613-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
Oocyte in vitro maturation (IVM) is a technology with a long history that was established before IVF. Although it has been studied extensively, the efficiency of IVM has been poor for almost 30 years. In terms of the benefits of IVM, the efficiency and adoption of IVM are being improved by some notable improvements that have occurred in recent years. The establishment of biphasic IVM is the most important advancement in recent years. Biphasic IVM includes the pre-IVM culturing phase and IVM phase. The CNP-mediated pre-IVM culturing system is specifically tailored for non/minimally stimulated immature oocytes, and its efficiency has been shown. This is the most significant improvement made in recent decades in this area. In the clinic, IVM can be used for PCOS patients to avoid the occurrence of ovarian hyperstimulation syndrome (OHSS). Additionally, this method can solve the reproductive problems of some patients with special diseases (resistant ovary syndrome) that cannot be solved by IVF. In most fertility preservation procedures, oocytes in small antral follicles are lost. However, IVM has the ability to capture this kind of oocyte and save reproductive potential. IVM can be easily combined with fertility preservation strategies that have been applied in the clinic and improve the efficiency of fertility preservation. IVM is a useful and attractive technology and may be used widely worldwide in the near future.
Collapse
|
3
|
Mayeur A, Puy V, Windal V, Hesters L, Gallot V, Benoit A, Grynberg M, Sonigo C, Frydman N. Live birth rate after use of cryopreserved oocytes or embryos at the time of cancer diagnosis in female survivors: a retrospective study of ten years of experience. J Assist Reprod Genet 2021; 38:1767-1775. [PMID: 33797007 DOI: 10.1007/s10815-021-02168-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/22/2021] [Indexed: 01/13/2023] Open
Abstract
PURPOSE The aim of this study was to evaluate the outcomes of frozen oocytes or embryos cryopreserved after controlled ovarian stimulation (COS) or in vitro maturation (IVM) for female cancer patients who underwent a fertility preservation (FP) prior to gonadotoxic therapy. METHODS A retrospective cohort study from 2009 to December 2017 was conducted. Among the 667 female cancer patients who underwent oocytes or embryos cryopreservation for FP, 40 (6%) have returned to the fertility clinic between 2011 and 2019 to use their frozen material after being cured. We compared these thaw cycles outcomes according to the techniques used at the time of cryopreservation. RESULTS Among the 40 women cancer survivors who used their cryopreserved material, thirty patients have benefited from at least one embryo transfer. Ten patients did not have an embryo transfer since the oocytes did not survive after the thawing process or because no embryo was obtained after fertilization. We related three live births following FP using IVM (two from frozen oocytes and one after embryo cryopreservation). Five live births were obtained when COS was performed at the time of FP (one from frozen oocytes and four after embryo cryopreservation). CONCLUSIONS Our preliminary results, although they are obtained in a small sample, are encouraging and show that different FP techniques can be used in female cancer patients and lead to live births. IVM is one of the options available that does not delay the start of chemotherapy or if ovarian stimulation using gonadotropins is contraindicated.
Collapse
Affiliation(s)
- Anne Mayeur
- Reproductive Biology Unit CECOS, Antoine Béclère Hospital APHP, Paris-Saclay University, 157 rue de la porte de Trivaux, Clamart, 92140, Paris, France.
| | - Vincent Puy
- Reproductive Biology Unit CECOS, Antoine Béclère Hospital APHP, Paris-Saclay University, 157 rue de la porte de Trivaux, Clamart, 92140, Paris, France.,Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Paris University, Paris-Saclay University, CEA, F-92265 Fontenay-aux-Roses, Paris, France
| | - Victoria Windal
- Reproductive Biology Unit CECOS, Antoine Béclère Hospital APHP, Paris-Saclay University, 157 rue de la porte de Trivaux, Clamart, 92140, Paris, France
| | - Laetitia Hesters
- Reproductive Biology Unit CECOS, Antoine Béclère Hospital APHP, Paris-Saclay University, 157 rue de la porte de Trivaux, Clamart, 92140, Paris, France
| | - Vanessa Gallot
- Department of Reproductive Medicine and Fertility Preservation, Antoine Béclère Hospital, APHP, Paris-Saclay University, Clamart, 92140, Paris, France
| | - Alexandra Benoit
- Department of Reproductive Medicine and Fertility Preservation, Antoine Béclère Hospital, APHP, Paris-Saclay University, Clamart, 92140, Paris, France
| | - Michael Grynberg
- Department of Reproductive Medicine and Fertility Preservation, Antoine Béclère Hospital, APHP, Paris-Saclay University, Clamart, 92140, Paris, France
| | - Charlotte Sonigo
- Department of Reproductive Medicine and Fertility Preservation, Antoine Béclère Hospital, APHP, Paris-Saclay University, Clamart, 92140, Paris, France
| | - Nelly Frydman
- Reproductive Biology Unit CECOS, Antoine Béclère Hospital APHP, Paris-Saclay University, 157 rue de la porte de Trivaux, Clamart, 92140, Paris, France.,Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Paris University, Paris-Saclay University, CEA, F-92265 Fontenay-aux-Roses, Paris, France
| |
Collapse
|
4
|
De Coster T, Velez DA, Van Soom A, Woelders H, Smits K. Cryopreservation of equine oocytes: looking into the crystal ball. Reprod Fertil Dev 2021; 32:453-467. [PMID: 32172776 DOI: 10.1071/rd19229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Invitro embryo production has evolved rapidly in the horse over the past decade, but blastocyst rates from vitrified equine oocytes remain quite poor and further research is needed to warrant application. Oocyte vitrification is affected by several technical and biological factors. In the horse, short exposure of immature oocytes to the combination of permeating and non-permeating cryoprotective agents has been associated with the best results so far. High cooling and warming rates are also crucial and can be obtained by using minimal volumes and open cryodevices. Vitrification of invivo-matured oocytes has yielded better results, but is less practical. The presence of the corona radiata seems to partially protect those factors that are necessary for the construction of the normal spindle and for chromosome alignment, but multiple layers of cumulus cells may impair permeation of cryoprotective agents. In addition to the spindle, the oolemma and mitochondria are also particularly sensitive to vitrification damage, which should be minimised in future vitrification procedures. This review presents promising protocols and novel strategies in equine oocyte vitrification, with a focus on blastocyst development and foal production as most reliable outcome parameters.
Collapse
Affiliation(s)
- Tine De Coster
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; and Corresponding authors. ;
| | - Daniel Angel Velez
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; and Corresponding authors. ;
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Henri Woelders
- Wageningen Livestock Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
5
|
Li X, Mu Y, Elshewy N, Ding D, Zou H, Chen B, Chen C, Wei Z, Cao Y, Zhou P, Zhang Z. Comparison of IVF and IVM outcomes in the same patient treated with a modified IVM protocol along with an oocytes-maturing system containing melatonin: A pilot study. Life Sci 2021; 264:118706. [PMID: 33152350 DOI: 10.1016/j.lfs.2020.118706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
AIM To compare embryonic developmental competence and clinical outcomes of oocytes matured in vivo (IVF oocytes) and those matured in vitro (IVM oocytes) from the same IVM/IVF cycles, and to analyze the clinical efficiency of a melatonin-supplemented in vitro maturation system combined with a modified IVM/IVF protocol. MAIN METHODS We randomly recruited 22 patients undergoing IVM/IVF treatment protocol in our medical centre. The fertilization, cleavage and blastocyst formation rates, as well as clinical pregnancy, implantation and live birth/ongoing pregnancy rates were analysed and compared between IVF and IVM oocytes. We evaluated mitochondrial function indicators by fluorescence staining and confocal microscopy, including mitochondrial membrane potential, reactive oxygen species and calcium (Ca2+) levels in 15 IVF and 15 IVM oocytes. KEY FINDINGS There were no significant differences in fertilization or blastocyst formation rates between the IVF and IVM groups, whereas the cleavage rate was significantly higher in the IVF versus IVM group (100% vs 93.4 ± 10.9%, p = 0.03). There were no significant differences in the clinical pregnancy, implantation or live birth/ongoing pregnancy rates between the two groups. The cumulative clinical pregnancy and ongoing pregnancy/live birth rate per pick-up oocyte in the IVM/IVF treatment cycles were 68.2% (15/22) and 54.5% (12/22), respectively. The reactive oxygen species and Ca2+ levels were significantly increased, and mitochondrial membrane potential was significantly decreased, in IVM compared with IVF oocytes. SIGNIFICANCE The modified IVM/IVF protocol can be effectively applied to the treatment of some indicated patients and achieve ideal clinical outcomes, even though the developmental potential of IVM oocytes may not be as high as IVF oocytes.
Collapse
Affiliation(s)
- Xinyuan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yaoqin Mu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Nagwa Elshewy
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ding Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Change Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
6
|
Cho HW, Lee S, Min KJ, Hong JH, Song JY, Lee JK, Lee NW, Kim T. Advances in the Treatment and Prevention of Chemotherapy-Induced Ovarian Toxicity. Int J Mol Sci 2020; 21:E7792. [PMID: 33096794 PMCID: PMC7589665 DOI: 10.3390/ijms21207792] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
Due to improvements in chemotherapeutic agents, cancer treatment efficacy and cancer patient survival rates have greatly improved, but unfortunately gonadal damage remains a major complication. Gonadotoxic chemotherapy, including alkylating agents during reproductive age, can lead to iatrogenic premature ovarian insufficiency (POI), and loss of fertility. In recent years, the demand for fertility preservation has increased dramatically among female cancer patients. Currently, embryo and oocyte cryopreservation are the only established options for fertility preservation in women. However, there is growing evidence for other experimental techniques including ovarian tissue cryopreservation, oocyte in vitro maturation, artificial ovaries, stem cell technologies, and ovarian suppression. To prevent fertility loss in women with cancer, individualized fertility preservation options including established and experimental techniques that take into consideration the patient's age, marital status, chemotherapy regimen, and the possibility of treatment delay should be provided. In addition, effective multidisciplinary oncofertility strategies that involve a highly skilled and experienced oncofertility team consisting of medical oncologists, gynecologists, reproductive biologists, surgical oncologists, patient care coordinators, and research scientists are necessary to provide cancer patients with high-quality care.
Collapse
Affiliation(s)
| | - Sanghoon Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Korea; (H.-W.C.); (K.-J.M.); (J.H.H.); (J.Y.S.); (J.K.L.); (N.W.L.); (T.K.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Improving the maturation rate of human oocytes collected ex vivo during the cryopreservation of ovarian tissue. J Assist Reprod Genet 2020; 37:891-904. [PMID: 32096110 DOI: 10.1007/s10815-020-01724-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/17/2020] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The aim of the present study was to improve the in vitro maturation (IVM) procedure using oocytes from surplus ovarian tissue after fertility preservation. METHODS Twenty-five patients aged 17-37 years were included in the study. Maturation was compared between oocytes collected in HEPES-buffered medium or saline, and we determined whether transport on ice prior to oocyte collection affected maturation. Two different IVM media were used that were supplemented with and without recombinant human midkine. Mature oocytes were assessed for aneuploidy using next-generation sequencing (NGS). RESULTS On average, 36 immature oocytes were collected from each patient (range 7-90, N = 895). Oocytes recovered from HEPES-buffered medium matured at a higher rate than oocytes recovered from saline (36% vs 26%, p < 0.01). Ovarian transportation on ice prior to the procedure negatively affected maturation compared with non-transported samples (42% vs 27%, p < 0.01). The addition of midkine improved maturation rate (34% vs 27%, p < 0.05). On average, 11 MII oocytes were obtained per patient (range 1-30). NGS of 53 MII oocytes and their first polar bodies indicated that 64% were euploid. CONCLUSIONS The study demonstrated unexpectedly high number of immature oocytes collected from surplus ovarian tissue without any stimulation. The overall MII rate was one in three, resulting in a total number of MII oocytes that was similar to the number obtained after ovarian stimulation. If these MII oocytes prove suitable for IVF, they will provide a substantial improvement in fertility preservation for patients and advance IVM as an interesting platform for further improvements in assisted reproduction.
Collapse
|
8
|
Zou H, Chen B, Ding D, Gao M, Chen D, Liu Y, Hao Y, Zou W, Ji D, Zhou P, Wei Z, Cao Y, Zhang Z. Melatonin promotes the development of immature oocytes from the COH cycle into healthy offspring by protecting mitochondrial function. J Pineal Res 2020; 68:e12621. [PMID: 31714635 DOI: 10.1111/jpi.12621] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/14/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022]
Abstract
Melatonin (MT) regulates reproductive performance as a potent antioxidant; however, its beneficial effects on oocyte development remain largely unknown, especially in human oocytes. The collected 193 immature oocytes from the controlled ovarian hyperstimulation (COH) cycle underwent in vitro maturation (IVM) in IVM medium contained 10 μmol/L MT (n = 105, M group) and no MT (n = 88, NM group), followed by insemination and embryo culture. The results showed that the high-quality blastocyst formation rate in the M group (28.4%) was significantly higher than that in the NM group (2.0%) (P = .0001), and the aneuploidy rate was low (15.8%). In the subsequent clinical trials, three healthy infants were delivered. Next, single-cell RNA-seq data revealed 1026 differentially expressed genes (DEGs) between the two groups, KEGG enrichment analysis revealed that the majority of DEGs involved in oxidative phosphorylation pathway, which associated with ATP generation, was upregulated in the M group. Finally, confocal fluorescence staining results revealed that the mitochondrial membrane potential in the oocytes significantly increased and intracellular ROS and Ca2+ levels greatly decreased in the M group. Melatonin can promote the development of immature human oocytes retrieved from the COH cycle into healthy offspring by protecting mitochondrial function.
Collapse
Affiliation(s)
- Huijuan Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Beili Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Ding Ding
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Ming Gao
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dawei Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Yan Hao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| |
Collapse
|
9
|
Escrich L, Galiana Y, Grau N, Insua F, Soler N, Pellicer A, Escribá MJ. Do immature and mature sibling oocytes recovered from stimulated cycles have the same reproductive potential? Reprod Biomed Online 2018; 37:667-676. [PMID: 30539737 DOI: 10.1016/j.rbmo.2018.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/25/2022]
Abstract
RESEARCH QUESTION How can laboratory and clinical outcomes of spontaneously, early maturing germinal-vesicle oocytes and sibling in-vivo-matured (metaphase II [MII]) oocytes be quantified and compared? DESIGN A prospective, non-randomized intra-cohort study of oocytes from women aged 38 years or younger, with six or fewer MII oocytes and four or more germinal vesicles retrieved. No indication was identified for genetic tests or oocyte or embryo cryopreservation. The study was carried out at IVIRMA-Valencia. Early maturing germinal vesicles were selected for reproductive purposes. In vitro- and in-vivo MII oocytes were fertilized. After time-lapse culture, hatching blastocysts from germinal vesicles were biopsied for aneuploidy screening and vitrified. Laboratory and clinical outcomes were compared according to oocyte origin. RESULTS Almost 70% of germinal vesicles had matured early and spontaneously, and had comparable in vitro-outcomes and morphokinetics to sibling in vivo-matured oocytes. Fifty per cent of biopsied blastocysts were euploid. Germinal-vesicle rescue increased the number of MII oocytes per cycle to 3.9, finally adding one extra-blastocyst per cycle. A live birth confirmed the feasibility of this approach. Further data, however, are needed to quantify its real contribution to standard intracytoplasmic sperm injection cycles. Nevertheless, 40% of patients obtained either an immediate advantage (reduction of cancellation rate) or long-term benefit (availability of extra blastocysts of attempts). CONCLUSIONS Germinal-vesicle rescue can be considered as a complementary approach when folliculometry (expected) and number of MII (observed) are unequal.
Collapse
Affiliation(s)
- L Escrich
- IVF Laboratory, IVIRMA-Valencia, Valencia 46015, Spain
| | - Y Galiana
- IVF Laboratory, IVIRMA-Valencia, Valencia 46015, Spain; IVF Laboratory, IVF Spain, Alicante 03540, Spain
| | - N Grau
- IVF Laboratory, IVIRMA-Valencia, Valencia 46015, Spain
| | - F Insua
- IVF Laboratory, IVIRMA-Valencia, Valencia 46015, Spain
| | - N Soler
- IVF Laboratory, IVIRMA-Valencia, Valencia 46015, Spain
| | - A Pellicer
- Reproductive Medicine Research Group, Instituto de Investigación Sanitaria La Fe, La Fe University Hospital, Valencia 46026, Spain; IVIRMA- Roma, Roma 00197, Italy
| | - M J Escribá
- IVF Laboratory, IVIRMA-Valencia, Valencia 46015, Spain; IVI Foundation, INCLIVA, Valencia 46026, Spain.
| |
Collapse
|
10
|
Current perspectives on in vitro maturation and its effects on oocyte genetic and epigenetic profiles. SCIENCE CHINA-LIFE SCIENCES 2018; 61:633-643. [PMID: 29569023 DOI: 10.1007/s11427-017-9280-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
In vitro maturation (IVM), the maturation in culture of immature oocytes, has been used in clinic for more than 20 years. Although IVM has the specific advantages of low cost and minor side effects over controlled ovarian stimulation, the prevalence of IVM is less than 1% of routine in vitro fertilization and embryo transfer techniques in many reproductive centers. In this review, we searched the MEDLINE database for all full texts and/or abstract articles published in English with content related to oocyte IVM mainly between 2000 and 2016. Many different aspects of the IVM method may influence oocyte potential, including priming, gonadotrophin, growth factors, and culture times. The culture conditions of IVM result in alterations in the oocyte or cumulus cell transcriptome that are not observed under in vivo culture conditions. Additionally, epigenetic modifications, such as DNA methylation or acetylation, are also different between in vitro and in vivo cultured oocytes. In sum, current IVM technique is still not popular and requires more systematic and intensive research to improve its effects and applications. This review will help point our problems, supply evidence or clues for future improving IVM technique, thus assist patients for fertility treatment or preservation as an additional option.
Collapse
|
11
|
Gao HH, Li JT, Liu JJ, Yang QA, Zhang JM. Autophagy inhibition of immature oocytes during vitrification-warming and in vitro mature activates apoptosis via caspase-9 and -12 pathway. Eur J Obstet Gynecol Reprod Biol 2017; 217:89-93. [PMID: 28863387 DOI: 10.1016/j.ejogrb.2017.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/15/2017] [Accepted: 08/19/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study is to determine the role of autophagy in the immature oocytes during vitrification-warming and in vitro maturation (IVM); the correlations among autophagy, apoptosis, and the activities of caspase in the immature oocytes during vitrification-warming and IVM were also explored. STUDY DESIGN Immature oocytes from mice were vitrified-warmed and IVM. An autophagy inhibitor (3-methyladenine) was supplemented in cryopreservation solutions and warming solutions. The expression of beclin-1 (an autophagy marker), caspase-3, -8, -9, and -12 were measured. Moreover, the viability of vitrified-warmed immature oocytes and their subsequent developmental competence were measured. RESULTS The levels of beclin-1 expression in both mRNA and protein in oocytes experienced vitrification-warming and IVM were significantly higher than that in fresh immature oocytes experienced IVM. The levels of caspase-3, -9, -12 expression in both mRNA and protein in oocytes vitrified with 3-methyladenine were significantly higher than that vitrified without 3-methyladenine. However, the differences in the caspase-8 expression in both mRNA and protein between the oocytes vitrified with 3-methyladenine and that vitrified without 3-methyladenine were not significant. CONCLUSION Immature oocyte cryopreservation exhibits autophagic activation. Autophagy inhibition of the immature oocytes during vitrification-warming and IVM activates apoptosis via caspase-9 and -12 pathway.
Collapse
Affiliation(s)
- Hai-Hua Gao
- Center for Reproductive Medicine, Hospital for Maternity and Child Care of Linyi City, Linyi, China
| | - Jun-Tao Li
- Department of Reproductive Medicine, Jinan Central Hospital affiliated to Shandong University, Jinan, China
| | - Jing-Jing Liu
- Hospital affiliated to Institute of Traditional Chinese Medicine & Materia Medica, Jinan, China
| | - Qing-Ai Yang
- School of Nursing, Shandong Xiehe University, Jinan, China
| | - Jian-Min Zhang
- School of Nursing, Shandong Xiehe University, Jinan, China.
| |
Collapse
|
12
|
Khalili MA, Shahedi A, Ashourzadeh S, Nottola SA, Macchiarelli G, Palmerini MG. Vitrification of human immature oocytes before and after in vitro maturation: a review. J Assist Reprod Genet 2017; 34:1413-1426. [PMID: 28822010 DOI: 10.1007/s10815-017-1005-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022] Open
Abstract
The use of immature oocytes subjected to in vitro maturation (IVM) opens interesting perspectives for fertility preservation where ovarian reserves are damaged by pathologies or therapies, as in PCO/PCOS and cancer patients. Human oocyte cryopreservation may offer some advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation and postponing childbirth. It also eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In addition, a successful oocyte cryopreservation program could eliminate the need for donor and recipient menstrual cycle synchronization. Recent advances in vitrification technology have markedly improved the oocyte survival rate after warming, with fertilization and implantation rates comparable with those of fresh oocytes. Healthy live births can be achieved from the combination of IVM and vitrification, even if vitrification of in vivo matured oocytes is still more effective. Recently, attention is given to highlight whether vitrification procedures are more successful when performed before or after IVM, on immature GV-stage oocytes, or on in vitro matured MII-stage oocytes. In this review, we emphasize that, even if there are no differences in survival rates between oocytes vitrified prior to or post-IVM, reduced maturation rates of immature oocytes vitrified prior to IVM can be, at least in part, explained by underlying ultrastructural and biomolecular alterations.
Collapse
Affiliation(s)
- Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Abbas Shahedi
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sareh Ashourzadeh
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Afzalipour Clinical Center for Infertility, Kerman University of Medical Sciences, Kerman, Iran
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, University of Rome La Sapienza, Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
13
|
Shirasawa H, Terada Y. In vitro maturation of human immature oocytes for fertility preservation and research material. Reprod Med Biol 2017; 16:258-267. [PMID: 29259476 PMCID: PMC5715881 DOI: 10.1002/rmb2.12042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023] Open
Abstract
Aim In recent years, the importance of fertility preservation (FP) has increased. In vitro maturation (IVM), an important technique in FP, has started to be used in the clinic, but controversies persist regarding this technique. Here, a survey of IVM for FP is provided. Methods Based on a literature review, the applications of FP, methods of FP, IVM of oocytes that had been collected in vivo and ex vivo, maturation of oocytes after IVM for FP, cryopreservation of oocytes for FP, explanation of the procedures to patients, and recent research on FP using IVM were investigated. Results Although IVM for FP remains controversial, the application of FP is expected to expand. Depending on the age and disease status of the patient, various methods of oocyte collection and ovarian stimulation, as well as various needle types and aspiration pressures, have been reported. The maturation rate of IVM in FP ranges widely and requires optimization in the future. In regard to cryopreservation for matured oocytes, the vitrification method is currently recommended. Conclusion Regarding FP for patients with cancer, the treatment of cancer is prioritized; thus, the time and use of medicines are often constrained. As several key points regarding IVM remain unclear, well‐designed and specific counseling for patients is necessary.
Collapse
Affiliation(s)
- Hiromitsu Shirasawa
- Department of Obstetrics and Gynecology Akita University Graduate School of Medicine Akita Japan
| | - Yukihiro Terada
- Department of Obstetrics and Gynecology Akita University Graduate School of Medicine Akita Japan
| |
Collapse
|
14
|
Combelles CM. In VitroMaturation of Human Oocytes: Current Practices and Future Promises. Hum Reprod 2016. [DOI: 10.1002/9781118849613.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
15
|
Zeng YC, Tang HR, Zeng LP, Chen Y, Wang GP, Wu RF. Assessment of the effect of different vitrification solutions on human ovarian tissue after short-term xenotransplantation onto the chick embryo chorioallantoic membrane. Mol Reprod Dev 2016; 83:359-69. [PMID: 26924442 DOI: 10.1002/mrd.22631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/20/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Yu-Cui Zeng
- Department of Gynecology and Obstetrics; Peking University Shenzhen Hospital; Shenzhen China
| | - Hui-Ru Tang
- Department of Gynecology and Obstetrics; Peking University Shenzhen Hospital; Shenzhen China
- Section of Gynecological Endocrinology Medicine; Shenzhen China
| | - Li-Ping Zeng
- Department of Gynecology and Obstetrics; Peking University Shenzhen Hospital; Shenzhen China
- Section of Gynecological Endocrinology Medicine; Shenzhen China
| | - Yun Chen
- Department of Ultrasound; Peking University Shenzhen Hospital; Shenzhen China
| | - Guo-Ping Wang
- Department of Gynecology and Obstetrics; Peking University Shenzhen Hospital; Shenzhen China
- Section of Gynecological Endocrinology Medicine; Shenzhen China
| | - Rui-Fang Wu
- Department of Gynecology and Obstetrics; Peking University Shenzhen Hospital; Shenzhen China
- Key Laboratory of Gynecological Diagnostic Technology Research; Shenzhen China
| |
Collapse
|
16
|
Affiliation(s)
- Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
17
|
Wei JH, Yuan XY, Zhang JM, Wei JQ. Caspase activity and oxidative stress of granulosa cells are associated with the viability and developmental potential of vitrified immature oocytes. Eur J Obstet Gynecol Reprod Biol 2015; 198:22-26. [PMID: 26773244 DOI: 10.1016/j.ejogrb.2015.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/16/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study is to determine whether caspase activity and oxidative stress of granulosa cells are associated with the viability and developmental potential of vitrified immature oocytes. STUDY DESIGN Oocytes from mice were exposed to genistein or/and Z-VAD-FMK with or without vitrification. Ultrastructural alterations of granulosa cells in vitrified immature oocytes were observed. Moreover, the level of superoxide dismutase (SOD) in granulosa cells, incidence of apoptotic follicles, the viability of vitrified-warmed oocytes and their subsequent developmental competence were measured. RESULTS Ultrastructural alterations of granulosa cells vitrified in the presence of genistein or Z-VAD-FMK were slighter than that of granulosa cells vitrified in the absence of genistein or Z-VAD-FMK. The incidence of apoptotic follicles vitrified in the presence of genistein or Z-VAD-FMK was significantly lower than that of immature oocytes vitrified in the absence of genistein or Z-VAD-FMK, whereas, the level of SOD in granulosa cells, the viability and developmental competence of immature oocytes vitrified in the presence of genistein or Z-VAD-FMK were significantly higher than that of immature oocytes vitrified in the absence of genistein or Z-VAD-FMK. CONCLUSION Both antioxidant (genistein) and caspase inhibition (Z-VAD-FMK) improve the viability and developmental competence of vitrified immature oocytes. Genistein is superior to Z-VAD-FMK in improving the efficacy of immature oocyte vitrification.
Collapse
Affiliation(s)
- Jian-Hong Wei
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang City, China
| | - Xin-Yan Yuan
- Department of Obstetrics and Gynecology, Central Hospital of Qingdao City, China
| | - Jian-Min Zhang
- Department of Reproductive Medicine, People's Hospital of Laiwu City, China
| | - Jian-Qiang Wei
- Department of Thoracic Surgery, People's Hospital of Qingzhou City, China.
| |
Collapse
|