1
|
Komatsu C, van der Merwe Y, He L, Kasi A, Sims JR, Miller MR, Rosner IA, Khatter NJ, Su AJA, Schuman JS, Washington KM, Chan KC. In vivo MRI evaluation of anterograde manganese transport along the visual pathway following whole eye transplantation. J Neurosci Methods 2022; 372:109534. [PMID: 35202613 PMCID: PMC8940646 DOI: 10.1016/j.jneumeth.2022.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since adult mammalian retinal ganglion cells cannot regenerate after injury, we have recently established a whole-eye transplantation (WET) rat model that provides an intact optical system to investigate potential surgical restoration of irreversible vision loss. However, it remains to be elucidated whether physiological axoplasmic transport exists in the transplanted visual pathway. New Method: We developed an in vivo imaging model system to assess WET integration using manganese-enhanced magnetic resonance imaging (MEMRI) in rats. Since Mn2+ is a calcium analogue and an active T1-positive contrast agent, the levels of anterograde manganese transport can be evaluated in the visual pathways upon intravitreal Mn2+ administration into both native and transplanted eyes. RESULTS No significant intraocular pressure difference was found between native and transplanted eyes, whereas comparable manganese enhancement was observed between native and transplanted intraorbital optic nerves, suggesting the presence of anterograde manganese transport after WET. No enhancement was detected across the coaptation site in the higher visual areas of the recipient brain. Comparison with Existing Methods: Existing imaging methods to assess WET focus on either the eye or local optic nerve segments without direct visualization and longitudinal quantification of physiological transport along the transplanted visual pathway, hence the development of in vivo MEMRI. CONCLUSION Our established imaging platform indicated that essential physiological transport exists in the transplanted optic nerve after WET. As neuroregenerative approaches are being developed to connect the transplanted eye to the recipient's brain, in vivo MEMRI is well-suited to guide strategies for successful WET integration for vision restoration. Keywords (Max 6): Anterograde transport, magnetic resonance imaging, manganese, neuroregeneration, optic nerve, whole-eye transplantation.
Collapse
Affiliation(s)
- Chiaki Komatsu
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yolandi van der Merwe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lin He
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Plastic, Aesthetic & Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Anisha Kasi
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Jeffrey R Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Maxine R Miller
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ian A Rosner
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Neil J Khatter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States; William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| | - An-Jey A Su
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Kia M Washington
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States; Veterans Administration Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Kevin C Chan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States; Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States.
| |
Collapse
|
2
|
Deng W, Faiq MA, Liu C, Adi V, Chan KC. Applications of Manganese-Enhanced Magnetic Resonance Imaging in Ophthalmology and Visual Neuroscience. Front Neural Circuits 2019; 13:35. [PMID: 31156399 PMCID: PMC6530364 DOI: 10.3389/fncir.2019.00035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Understanding the mechanisms of vision in health and disease requires knowledge of the anatomy and physiology of the eye and the neural pathways relevant to visual perception. As such, development of imaging techniques for the visual system is crucial for unveiling the neural basis of visual function or impairment. Magnetic resonance imaging (MRI) offers non-invasive probing of the structure and function of the neural circuits without depth limitation, and can help identify abnormalities in brain tissues in vivo. Among the advanced MRI techniques, manganese-enhanced MRI (MEMRI) involves the use of active manganese contrast agents that positively enhance brain tissue signals in T1-weighted imaging with respect to the levels of connectivity and activity. Depending on the routes of administration, accumulation of manganese ions in the eye and the visual pathways can be attributed to systemic distribution or their local transport across axons in an anterograde fashion, entering the neurons through voltage-gated calcium channels. The use of the paramagnetic manganese contrast in MRI has a wide range of applications in the visual system from imaging neurodevelopment to assessing and monitoring neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this review, we present four major domains of scientific inquiry where MEMRI can be put to imperative use — deciphering neuroarchitecture, tracing neuronal tracts, detecting neuronal activity, and identifying or differentiating glial activity. We deliberate upon each category studies that have successfully employed MEMRI to examine the visual system, including the delivery protocols, spatiotemporal characteristics, and biophysical interpretation. Based on this literature, we have identified some critical challenges in the field in terms of toxicity, and sensitivity and specificity of manganese enhancement. We also discuss the pitfalls and alternatives of MEMRI which will provide new avenues to explore in the future.
Collapse
Affiliation(s)
- Wenyu Deng
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Muneeb A Faiq
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Crystal Liu
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Vishnu Adi
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Kevin C Chan
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States.,Department of Radiology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States.,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States
| |
Collapse
|
3
|
Bollaerts I, Veys L, Geeraerts E, Andries L, De Groef L, Buyens T, Salinas-Navarro M, Moons L, Van Hove I. Complementary research models and methods to study axonal regeneration in the vertebrate retinofugal system. Brain Struct Funct 2017; 223:545-567. [DOI: 10.1007/s00429-017-1571-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/15/2017] [Indexed: 01/18/2023]
|
4
|
Chen Y, Shi CY, Li Y, Hu YT, Han HB, Sun XD, Salvi SS, Ma ZZ. Ability of Mn(2+) to Permeate the Eye and Availability of Manganese-enhanced Magnetic Resonance Imaging for Visual Pathway Imaging via Topical Administration. Chin Med J (Engl) 2017; 129:1822-9. [PMID: 27453232 PMCID: PMC4976571 DOI: 10.4103/0366-6999.186630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: Manganese-enhanced magnetic resonance imaging (MEMRI) for visual pathway imaging via topical administration requires further research. This study investigated the permeability of the corneal epithelium and corneal toxicity after topical administration of Mn2+ to understand the applicability of MEMRI. Methods: Forty New Zealand rabbits were divided into 0.05 mol/L, 0.10 mol/L, and 0.20 mol/L groups as well as a control group (n = 10 in each group). Each group was further subdivided into epithelium-removed and epithelium-intact subgroups (n = 5 in each subgroup). Rabbits were given 8 drops of MnCl2 in 5 min intervals. The Mn2+ concentrations in the aqueous and vitreous humors were analyzed using inductively coupled plasma-mass spectrometry at different time points. MEMRI scanning was carried out to image the visual pathway after 24 h. The corneal toxicity of Mn2+ was evaluated with corneal imaging and pathology slices. Results: Between the aqueous and vitreous humors, there was a 10 h lag for the peak Mn2+ concentration times. The intraocular Mn2+ concentration increased with the concentration gradients of Mn2+ and was higher in the epithelium-removed subgroup than that in the epithelium-intact subgroup. The enhancement of the visual pathway was achieved in the 0.10 mol/L and 0.20 mol/L epithelium-removed subgroups. The corresponding peak concentrations of Mn2+ were 5087 ± 666 ng/ml, 22920 ± 1188 ng/ml in the aqueous humor and 884 ± 78 ng/ml, 2556 ± 492 ng/ml in the vitreous body, respectively. Corneal injury was evident in the epithelium-removed and 0.20 mol/L epithelium-intact subgroups. Conclusions: The corneal epithelium is a barrier to Mn2+, and the iris and lens septum might be another intraocular barrier to the permeation of Mn2+. An elevated Mn2+ concentration contributes to the increased permeation of Mn2+, higher MEMRI signal, and corneal toxicity. The enhancement of the visual pathway requires an effective Mn2+ concentration in the vitreous body.
Collapse
Affiliation(s)
- Yao Chen
- Department of Ophthalmology, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Chun-Yan Shi
- Department of Radiology, Key Laboratory of Magnetic Resonance Imaging Equipment and Technology, Peking University Third Hospital, Beijing 100083, China
| | - Ying Li
- Department of Ophthalmology, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Yun-Tao Hu
- Department of Ophthalmology, Beijing Tsinghua Chang Gung Hospital, Beijing 102218, China
| | - Hong-Bin Han
- Department of Radiology, Key Laboratory of Magnetic Resonance Imaging Equipment and Technology, Peking University Third Hospital, Beijing 100083, China
| | - Xiao-Dong Sun
- Department of Ophthalmology, Affiliated First People's Hospital of Shanghai Jiao Tong University, Shanghai 200080, China
| | - Satyajeet S Salvi
- Department of Ophthalmology, Beijing Tsinghua Chang Gung Hospital, Beijing 102218, China
| | - Zhi-Zhong Ma
- Department of Ophthalmology, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
5
|
Semiquantitative assessment of optic nerve injury using manganese-enhanced MRI. Jpn J Radiol 2016; 34:356-65. [PMID: 26943911 DOI: 10.1007/s11604-016-0533-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate the capability of manganese (Mn(2+))-enhanced MRI (MEMRI) in a continuously semiquantitative assessment of rat optic nerve (ON) injury. METHODS Forty rats were divided into three groups: (I) a control group that was submitted to MEMRI or to fluorescent labeling of retinal ganglion cells (RGCs) (n = 10); (II) an ON injury group that was submitted to MEMRI (n = 15); (III) an ON injury group that was submitted to fluorescent labeling of RGCs (n = 15). Groups II and III were examined at 3, 7, and 14 days post-lesion (dpl), when the contrast-to-noise ratio (CNR) of the retina and ON was measured on MEMRI images and the RGCs were counted by fluorescence microscopy and compared between the groups. RESULTS In the control group, the intact visual pathway from the retina to the contralateral superior colliculus was visualized by MEMRI. In group II, continuous Mn(2+) enhancement was seen from the retina to the lesion site of the optic nerves at 3, 7, and 14 dpl. However, no Mn(2+) enhancement was observed distal to the lesion site at those time points. The observed Mn(2+) enhancement proximal to the ON lesion site declined between 7 and 14 dpl. The decrease in Mn(2+)-enhanced signal intensity at these sites at 7 and 14 dpl when compared to that at 3 dpl was significant (P < 0.05). The RGC density dropped by 6.84, 45.31, and 72.36 % at 3, 7, and 14 dpl, respectively. CONCLUSION MEMRI can be used to evaluate the structural changes after optic nerve injury.
Collapse
|
6
|
McDonagh BH, Singh G, Hak S, Bandyopadhyay S, Augestad IL, Peddis D, Sandvig I, Sandvig A, Glomm WR. L-DOPA-Coated Manganese Oxide Nanoparticles as Dual MRI Contrast Agents and Drug-Delivery Vehicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:301-306. [PMID: 26619158 DOI: 10.1002/smll.201502545] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Manganese oxide nanoparticles (MONPs) are capable of time-dependent magnetic resonance imaging contrast switching as well as releasing a surface-bound drug. MONPs give T2/T2* contrast, but dissolve and release T1-active Mn(2+) and L-3,4-dihydroxyphenylalanine. Complementary images are acquired with a single contrast agent, and applications toward Parkinson's disease are suggested.
Collapse
Affiliation(s)
- Birgitte Hjelmeland McDonagh
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Gurvinder Singh
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Sjoerd Hak
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Sulalit Bandyopadhyay
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Ingrid Lovise Augestad
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Davide Peddis
- Institute of Structure and Matter, National Research Council, 00015, Monterotondo, Scalo, Italy
| | - Ioanna Sandvig
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CB2 OPY, Cambridge, UK
| | - Axel Sandvig
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Division of Pharmacology and Clinical Neurosciences, Department of Neurosurgery, Umeå University, 901 87, Umeå, Sweden
| | - Wilhelm Robert Glomm
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Sector for Biotechnology and Nanomedicine, SINTEF Materials and Chemistry, 7465, Trondheim, Norway
| |
Collapse
|
7
|
Jendelová P, Kubinová Š, Sandvig I, Erceg S, Sandvig A, Syková E. Current developments in cell- and biomaterial-based approaches for stroke repair. Expert Opin Biol Ther 2015; 16:43-56. [DOI: 10.1517/14712598.2016.1094457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|