1
|
Boulos A, Maroun D, Ciechanover A, Ziv NE. Peripheral sequestration of huntingtin delays neuronal death and depends on N-terminal ubiquitination. Commun Biol 2024; 7:1014. [PMID: 39155290 PMCID: PMC11330980 DOI: 10.1038/s42003-024-06733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
Huntington's disease (HD) is caused by a glutamine repeat expansion in the protein huntingtin. Mutated huntingtin (mHtt) forms aggregates whose impacts on neuronal survival are still debated. Using weeks-long, continual imaging of cortical neurons, we find that mHtt is gradually sequestrated into peripheral, mainly axonal aggregates, concomitant with dramatic reductions in cytosolic mHtt levels and enhanced neuronal survival. in-situ pulse-chase imaging reveals that aggregates continually gain and lose mHtt, in line with these acting as mHtt sinks at equilibrium with cytosolic pools. Mutating two N-terminal lysines found to be ubiquitinated in HD animal models suppresses peripheral aggregate formation and reductions in cytosolic mHtt, promotes nuclear aggregate formation, stabilizes aggregates and leads to pervasive neuronal death. These findings demonstrate the capacity of aggregates formed at peripheral locations to sequester away cytosolic, presumably toxic mHtt forms and support a crucial role for N-terminal ubiquitination in promoting these processes and delaying neuronal death.
Collapse
Affiliation(s)
- Ayub Boulos
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel
- Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA, USA
| | - Dunia Maroun
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel
| | - Aaron Ciechanover
- Rappaport Faculty of Medicine and Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Noam E Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel.
| |
Collapse
|
2
|
Costa CF, Li H, Hussein MAF, Yang Y, Lismont C, Fransen M. Assessment of the Peroxisomal Redox State in Living Cells Using NADPH- and NAD +/NADH-Specific Fluorescent Protein Sensors. Methods Mol Biol 2023; 2643:183-197. [PMID: 36952186 DOI: 10.1007/978-1-0716-3048-8_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pyridine nucleotides NAD(H) and NADP(H) are key molecules in cellular metabolism, and measuring their levels and oxidation states with spatiotemporal precision is of great value in biomedical research. Traditional methods to assess the redox state of these metabolites are intrusive and prohibit live-cell quantifications. This obstacle was surpassed by the development of genetically encoded fluorescent biosensors enabling dynamic measurements with subcellular resolution in living cells. Here, we provide step-by-step protocols to monitor the intraperoxisomal NADPH levels and NAD+/NADH redox state in cellulo by using targeted variants of iNAP1 and SoNar, respectively.
Collapse
Affiliation(s)
- Cláudio F Costa
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Hongli Li
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Mohamed A F Hussein
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Asyut, Egypt
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Celien Lismont
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Marc Fransen
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Lismont C, Revenco I, Costa CF, Li H, Hussein MAF, Van Veldhoven PP, Derua R, Fransen M. Identification of Peroxisome-Derived Hydrogen Peroxide-Sensitive Target Proteins Using a YAP1C-Based Genetic Probe. Methods Mol Biol 2023; 2643:161-181. [PMID: 36952185 DOI: 10.1007/978-1-0716-3048-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
As the reversible oxidation of protein cysteine thiols is an important mechanism in signal transduction, it is essential to have access to experimental approaches that allow for spatiotemporal indexing of the cellular sulfenome in response to local changes in H2O2 levels. Here, we provide a step-by-step guide for enriching and identifying the sulfenome of mammalian cells at the subcellular level in response to peroxisome-derived H2O2 by the combined use of (i) a previously developed cell line in which peroxisomal H2O2 production can be induced in a time- and dose-dependent manner; (ii) YAP1C, a genetically encoded yeast AP-1-like transcription factor-based probe that specifically reacts with S-sulfenylated cysteines and traps them through mixed disulfide bonds; and (iii) mass spectrometry. Given that this approach includes differential labeling of reduced and reversibly oxidized cysteine residues, it can also provide additional information on the positions of the modified cysteines. Gaining more in-depth insight into the complex nature of how alterations in peroxisomal H2O2 metabolism modulate the cellular sulfenome is key to our understanding of how these organelles act as redox signaling hubs in health and disease.
Collapse
Affiliation(s)
- Celien Lismont
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium.
| | - Iulia Revenco
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Cláudio F Costa
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Hongli Li
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Mohamed A F Hussein
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Paul P Van Veldhoven
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Rita Derua
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
- SyBioMa, KU Leuven, Leuven, Belgium
| | - Marc Fransen
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Moruno-Manchon JF, Uzor NE, Kesler SR, Wefel JS, Townley DM, Nagaraja AS, Pradeep S, Mangala LS, Sood AK, Tsvetkov AS. Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy. Mol Cell Neurosci 2017; 86:65-71. [PMID: 29180229 DOI: 10.1016/j.mcn.2017.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin, a commonly used anti-neoplastic agent, causes severe neurotoxicity. Doxorubicin promotes thinning of the brain cortex and accelerates brain aging, leading to cognitive impairment. Oxidative stress induced by doxorubicin contributes to cellular damage. In addition to mitochondria, peroxisomes also generate reactive oxygen species (ROS) and promote cell senescence. Here, we investigated if doxorubicin affects peroxisomal homeostasis in neurons. We demonstrate that the number of peroxisomes is increased in doxorubicin-treated neurons and in the brains of mice which underwent doxorubicin-based chemotherapy. Pexophagy, the specific autophagy of peroxisomes, is downregulated in neurons, and peroxisomes produce more ROS. 2-hydroxypropyl-β-cyclodextrin (HPβCD), an activator of the transcription factor TFEB, which regulates expression of genes involved in autophagy and lysosome function, mitigates damage of pexophagy and decreases ROS production induced by doxorubicin. We conclude that peroxisome-associated oxidative stress induced by doxorubicin may contribute to neurotoxicity, cognitive dysfunction, and accelerated brain aging in cancer patients and survivors. Peroxisomes might be a valuable new target for mitigating neuronal damage caused by chemotherapy drugs and for slowing down brain aging in general.
Collapse
Affiliation(s)
- Jose F Moruno-Manchon
- Department of Neurobiology and Anatomy, The University of Texas, Houston Medical School, Houston, TX, United States
| | - Ndidi-Ese Uzor
- Department of Neurobiology and Anatomy, The University of Texas, Houston Medical School, Houston, TX, United States; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Shelli R Kesler
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Debra M Townley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Archana Sidalaghatta Nagaraja
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrey S Tsvetkov
- Department of Neurobiology and Anatomy, The University of Texas, Houston Medical School, Houston, TX, United States; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States.
| |
Collapse
|
5
|
Lismont C, Walton PA, Fransen M. Quantitative Monitoring of Subcellular Redox Dynamics in Living Mammalian Cells Using RoGFP2-Based Probes. Methods Mol Biol 2017; 1595:151-164. [PMID: 28409459 DOI: 10.1007/978-1-4939-6937-1_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To gain additional insight into how specific cell organelles may participate in redox signaling, it is essential to have access to tools and methodologies that are suitable to monitor spatiotemporal differences in the levels of different reactive oxygen species (ROS) and the oxidation state of specific redox couples. Over the years, the use of genetically encoded fluorescent redox indicators with a ratiometric readout has constantly gained in popularity because they can easily be targeted to various subcellular compartments and monitored in real time in single cells. Here we provide step-by-step protocols and tips for the successful use of roGFP2, a redox-sensitive variant of the enhanced green fluorescent protein, to monitor changes in glutathione redox balance and hydrogen peroxide homeostasis in the cytosol, peroxisomes, and mitochondria of mammalian cells.
Collapse
Affiliation(s)
- Celien Lismont
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, University of Leuven - KU Leuven, Herestraat 49 - box 601, Leuven, 3000, Belgium
| | - Paul A Walton
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, University of Leuven - KU Leuven, Herestraat 49 - box 601, Leuven, 3000, Belgium.,Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada
| | - Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, University of Leuven - KU Leuven, Herestraat 49 - box 601, Leuven, 3000, Belgium.
| |
Collapse
|
6
|
Fransen M, Brees C. KillerRed as a Tool to Study the Cellular Responses to Peroxisome-Derived Oxidative Stress. Methods Mol Biol 2017; 1595:165-179. [PMID: 28409460 DOI: 10.1007/978-1-4939-6937-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many biological processes and cell fate decisions are modulated by changes in redox environment. To gain insight into how subcellular compartmentalization of reactive oxygen species (ROS) formation contributes to (site-specific) redox signaling and oxidative stress responses, it is critical to have access to tools that allow tight spatial and temporal control of ROS production. Over the past decade, the use of genetically encoded photosensitizers has attracted growing interest of researchers because these proteins can be easily targeted to various subcellular compartments and allow for controlled release of ROS when excited by light. This chapter provides guidance and practical advice on the use of po-KR, a peroxisomal variant of the phototoxic red fluorescent protein KillerRed, to address fundamental questions about how mammalian cells cope with peroxisome-derived oxidative stress.
Collapse
Affiliation(s)
- Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Leuven, Belgium.
| | - Chantal Brees
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Nordgren M, Francisco T, Lismont C, Hennebel L, Brees C, Wang B, Van Veldhoven PP, Azevedo JE, Fransen M. Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. Autophagy 2016; 11:1326-40. [PMID: 26086376 DOI: 10.1080/15548627.2015.1061846] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Peroxisomes are ubiquitous cell organelles essential for human health. To maintain a healthy cellular environment, dysfunctional and superfluous peroxisomes need to be selectively removed. Although emerging evidence suggests that peroxisomes are mainly degraded by pexophagy, little is known about the triggers and molecular mechanisms underlying this process in mammalian cells. In this study, we show that PEX5 proteins fused to a bulky C-terminal tag trigger peroxisome degradation in SV40 large T antigen-transformed mouse embryonic fibroblasts. In addition, we provide evidence that this process is autophagy-dependent and requires monoubiquitination of the N-terminal cysteine residue that marks PEX5 for recycling. As our findings also demonstrate that the addition of a bulky tag to the C terminus of PEX5 does not interfere with PEX5 monoubiquitination but strongly inhibits its export from the peroxisomal membrane, we hypothesize that such a tag mimics a cargo protein that cannot be released from PEX5, thus keeping monoubiquitinated PEX5 at the membrane for a sufficiently long time to be recognized by the autophagic machinery. This in turn suggests that monoubiquitination of the N-terminal cysteine of peroxisome-associated PEX5 not only functions to recycle the peroxin back to the cytosol, but also serves as a quality control mechanism to eliminate peroxisomes with a defective protein import machinery.
Collapse
Affiliation(s)
- Marcus Nordgren
- a Laboratory of Lipid Biochemistry and Protein Interactions; Department of Cellular and Molecular Medicine; University of Leuven - KU Leuven ; Leuven , Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
![]()
Exploration of protein function and
interaction is critical for
discovering links among genomics, proteomics, and disease state; yet,
the immense complexity of proteomics found in biological systems currently
limits our investigational capacity. Although affinity and autofluorescent
tags are widely employed for protein analysis, these methods have
been met with limited success because they lack specificity and require
multiple fusion tags and genetic constructs. As an alternative approach,
the innovative HaloTag protein fusion platform allows protein function
and interaction to be comprehensively analyzed using a single genetic
construct with multiple capabilities. This is accomplished using a
simplified process, in which a variable HaloTag ligand binds rapidly
to the HaloTag protein (usually linked to the protein of interest)
with high affinity and specificity. In this review, we examine all
current applications of the HaloTag technology platform for biomedical
applications, such as the study of protein isolation and purification,
protein function, protein–protein and protein–DNA interactions,
biological assays, in vitro cellular imaging, and in vivo molecular imaging. In addition, novel uses of the
HaloTag platform are briefly discussed along with potential future
applications.
Collapse
Affiliation(s)
- Christopher G England
- †Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Haiming Luo
- ‡Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- †Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,‡Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,§University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|