1
|
Smith BJ, Martins-de-Souza D, Fioramonte M. A Guide to Mass Spectrometry-Based Quantitative Proteomics. Methods Mol Biol 2019; 1916:3-39. [PMID: 30535679 DOI: 10.1007/978-1-4939-8994-2_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Proteomics has become an attractive science in the postgenomic era, given its capacity to identify up to thousands of molecules in a single, complex sample and quantify them in an absolute and/or relative manner. The use of these techniques enables understanding of cellular and molecular mechanisms of diseases and other biological conditions, as well as identification and screening of protein biomarkers. Here we provide a straightforward, up-to-date compilation and comparison of the main quantitation techniques used in comparative proteomics such as in vitro and in vivo stable isotope labeling and label-free techniques. Additionally, this chapter includes common methods for data acquisition in proteomics and some appropriate methods for data processing. This compilation can serve as a reference for scientists who are new to, or already familiar with, quantitative proteomics.
Collapse
Affiliation(s)
- Bradley J Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Center for Neurobiology, University of Campinas (UNICAMP), Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Sao Paulo, Brazil
| | - Mariana Fioramonte
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
2
|
Duque-Guimarães DE, de Almeida-Faria J, Ong TP, Ozanne SE. Pulsed SILAC as a Approach for miRNA Targets Identification in Cell Culture. Methods Mol Biol 2017; 1546:149-159. [PMID: 27896764 DOI: 10.1007/978-1-4939-6730-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pulsed stable isotope labeling by amino acids in cell culture (pSILAC) comprises a variation of the classical SILAC proteomic methodology that enables the identification of short-term proteomic responses such as those elicited by micro RNAs (miRNAs). Here, we describe a detailed pSILAC protocol for global identification and quantification of protein translation alterations induced by a miRNA using 3T3-L1 pre-adipocytes as a model system.
Collapse
Affiliation(s)
- Daniella E Duque-Guimarães
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana de Almeida-Faria
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - Thomas Prates Ong
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
- Food Research Center (FoRC) and Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
3
|
Pedersen CC, Refsgaard JC, Østergaard O, Jensen LJ, Heegaard NHH, Borregaard N, Cowland JB. Impact of microRNA-130a on the neutrophil proteome. BMC Immunol 2015; 16:70. [PMID: 26608132 PMCID: PMC4659159 DOI: 10.1186/s12865-015-0134-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/11/2015] [Indexed: 01/08/2023] Open
Abstract
Background MicroRNAs (miRNAs) are important for the development and function of neutrophils. miR-130a is highly expressed during early neutrophil development and regulates target proteins important for this process. miRNA targets are often identified by validating putative targets found by in silico prediction algorithms one at a time. However, one miRNA can have many different targets, which may vary depending on the context. Here, we investigated the effect of miR-130a on the proteome of a murine and a human myeloid cell line. Results Using pulsed stable isotope labelling of amino acids in cell culture and mass spectrometry for protein identification and quantitation, we found 44 and 34 proteins that were significantly regulated following inhibition of miR-130a in a miR-130a-overexpressing 32Dcl3 clone and Kasumi-1 cells, respectively. The level of miR-130a inhibition correlated with the impact on protein levels. We used RAIN, a novel database for miRNA–protein and protein–protein interactions, to identify putative miR-130a targets. In the 32Dcl3 clone, putative targets were more up-regulated than the remaining quantified proteins following miR-130a inhibition, and three significantly derepressed proteins (NFYC, ISOC1, and CAT) are putative miR-130a targets with good RAIN scores. We also created a network including inferred, putative neutrophil miR-130a targets and identified the transcription factors Myb and CBF-β as putative miR-130a targets, which may regulate the primary granule proteins MPO and PRTN3 and other proteins differentially expressed following miR-130a inhibition in the 32Dcl3 clone. Conclusion We have experimentally identified miR-130a-regulated proteins within the neutrophil proteome. Linking these to putative miR-130a targets, we provide an association network of potential direct and indirect miR-130a targets that expands our knowledge on the role of miR-130a in neutrophil development and is a valuable platform for further experimental studies. Electronic supplementary material The online version of this article (doi:10.1186/s12865-015-0134-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corinna Cavan Pedersen
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, 9322, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark.
| | - Jan Christian Refsgaard
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark.
| | - Ole Østergaard
- Department of Autoimmunology & Biomarkers, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen S, Denmark.
| | - Lars Juhl Jensen
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark.
| | - Niels Henrik Helweg Heegaard
- Department of Autoimmunology & Biomarkers, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen S, Denmark. .,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000, Odense C, Denmark.
| | - Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, 9322, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark.
| | - Jack Bernard Cowland
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, 9322, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
4
|
Beyond classical derivatization: analyte ‘derivatives’ in the bioanalysis of endogenous and exogenous compounds. Bioanalysis 2015; 7:2501-13. [DOI: 10.4155/bio.15.171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The analysis of endogenous and exogenous analytes in biological matrices presents several challenges to the bioanalyst. These analytes are often present at low concentrations, typically in complex matrices, and may have physicochemical properties that are not amenable to LC–MS analysis. The bioanalyst thus relies heavily on the formation of analyte derivatives for the efficient quantification of these compounds. These derivatives are also critically employed to derive information on the biology of living systems, potential drug or disease targets, and biomarkers of drug efficacy, safety, or disease progression. In this perspective, we demonstrate how analyte derivatives are applied in modern bioanalytical workflows and we discuss the potential use of these derivatives in the future.
Collapse
|
5
|
Moss TJ, Luo Z, Seviour EG, Sehgal V, Lu Y, Hill SM, Rupaimoole R, Lee JS, Rodriguez-Aguayo C, Lopez-Berestein G, Sood AK, Azencott R, Gray JW, Mukherjee S, Mills GB, Ram PT. Genome-wide perturbations by miRNAs map onto functional cellular pathways, identifying regulators of chromatin modifiers. NPJ Syst Biol Appl 2015; 1:15001. [PMID: 28725457 PMCID: PMC5516802 DOI: 10.1038/npjsba.2015.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/14/2015] [Accepted: 05/25/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Regulation of gene expression by microRNAs (miRNAs) is critical for determining cellular fate and function. Dysregulation of miRNA expression contributes to the development and progression of multiple diseases. miRNA can target multiple mRNAs, making deconvolution of the effects of miRNA challenging and the complexity of regulation of cellular pathways by miRNAs at the functional protein level remains to be elucidated. Therefore, we sought to determine the effects of expression of miRNAs in breast and ovarian cancer cells on cellular pathways by measuring systems-wide miRNA perturbations to protein and phosphoproteins. METHODS We measure protein level changes by reverse-phase protein array (RPPA) in MDA-MB-231, SKOV3.ip1 and HEYA8 cancer cell lines transfected by a library of 879 human miRNA mimics. RESULTS The effects of multiple miRNAs-protein networks converged in five broad functional clusters of miRNA, suggesting a broad overlap of miRNA action on cellular pathways. Detailed analysis of miRNA clusters revealed novel miRNA/cell cycle protein networks, which we functionally validated. De novo phosphoprotein network estimation using Gaussian graphical modeling, using no priors, revealed known and novel protein interplay, which we also observed in patient ovarian tumor proteomic data. We identified several miRNAs that have pluripotent activities across multiple cellular pathways. In particular we studied miR-365a whose expression is associated with poor survival across several cancer types and demonstrated that anti-miR-365 significantly reduced tumor formation in animal models. CONCLUSIONS Mapping of miRNA-induced protein and phosphoprotein changes onto pathways revealed new miRNA-cellular pathway connectivity, paving the way for targeting of dysregulated pathways with potential miRNA-based therapeutics.
Collapse
Affiliation(s)
- Tyler J Moss
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zijun Luo
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elena G Seviour
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vasudha Sehgal
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven M Hill
- Medical Research Council Biostatistics Unit, Cambridge, UK
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Azencott
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Sach Mukherjee
- Medical Research Council Biostatistics Unit, Cambridge, UK
- Cancer Research UK Cambridge Institute, School of Clinical Medicine, University of Cambridge, Robinson Way, Cambridge, UK
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prahlad T Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|