1
|
Kajimura Y, Tessari A, Orlacchio A, Thoms A, Cufaro MC, Marco FD, Amari F, Chen M, Soliman SHA, Rizzotto L, Zhang L, Amann J, Carbone DP, Ahmed A, Fiermonte G, Freitas M, Lodi A, Boccio PD, Palmieri D, Coppola V. An in vivo "turning model" reveals new RanBP9 interactions in lung macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595416. [PMID: 38826292 PMCID: PMC11142189 DOI: 10.1101/2024.05.22.595416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The biological functions of the scaffold protein Ran Binding Protein 9 (RanBP9) remain elusive in macrophages or any other cell type where this protein is expressed together with its CTLH (C-terminal to LisH) complex partners. We have engineered a new mouse model, named RanBP9-TurnX, where RanBP9 fused to three copies of the HA tag (RanBP9-3xHA) can be turned into RanBP9-V5 tagged upon Cre-mediated recombination. We created this model to enable stringent biochemical studies at cell type specific level throughout the entire organism. Here, we have used this tool crossed with LysM-Cre transgenic mice to identify RanBP9 interactions in lung macrophages. We show that RanBP9-V5 and RanBP9-3xHA can be both co-immunoprecipitated with the known members of the CTLH complex from the same whole lung lysates. However, more than ninety percent of the proteins pulled down by RanBP9-V5 differ from those pulled-down by RanBP9-HA. The lung RanBP9-V5 associated proteome includes previously unknown interactions with macrophage-specific proteins as well as with players of the innate immune response, DNA damage response, metabolism, and mitochondrial function. This work provides the first lung specific RanBP9-associated interactome in physiological conditions and reveals that RanBP9 and the CTLH complex could be key regulators of macrophage bioenergetics and immune functions.
Collapse
|
2
|
Yan M, Liu M, Davis AG, Stoner SA, Zhang DE. Single-cell RNA sequencing of a new transgenic t(8;21) preleukemia mouse model reveals regulatory networks promoting leukemic transformation. Leukemia 2024; 38:31-44. [PMID: 37838757 PMCID: PMC10776403 DOI: 10.1038/s41375-023-02063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
T(8;21)(q22;q22), which generates the AML1-ETO fusion oncoprotein, is a common chromosomal abnormality in acute myeloid leukemia (AML) patients. Despite having favorable prognosis, 40% of patients will relapse, highlighting the need for innovative models and application of the newest technologies to study t(8;21) leukemogenesis. Currently, available AML1-ETO mouse models have limited utility for studying the pre-leukemic stage because AML1-ETO produces mild hematopoietic phenotypes and no leukemic transformation. Conversely, overexpression of a truncated variant, AML1-ETO9a (AE9a), promotes fully penetrant leukemia and is too potent for studying pre-leukemic changes. To overcome these limitations, we devised a germline-transmitted Rosa26 locus AE9a knock-in mouse model that moderately overexpressed AE9a and developed leukemia with long latency and low penetrance. We observed pre-leukemic alterations in AE9a mice, including skewing of progenitors towards granulocyte/monocyte lineages and replating of stem and progenitor cells. Next, we performed single-cell RNA sequencing to identify specific cell populations that contribute to these pre-leukemic phenotypes. We discovered a subset of common myeloid progenitors that have heightened granulocyte/monocyte bias in AE9a mice. We also observed dysregulation of key hematopoietic transcription factor target gene networks, blocking cellular differentiation. Finally, we identified Sox4 activation as a potential contributor to stem cell self-renewal during the pre-leukemic stage.
Collapse
Affiliation(s)
- Ming Yan
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Mengdan Liu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amanda G Davis
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Stoner
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Tang J, Tu S, Lin G, Guo H, Yan C, Liu Q, Huang L, Tang N, Xiao Y, Pope RM, Rajaram MVS, Amer AO, Ahmer BM, Gunn JS, Wozniak DJ, Tao L, Coppola V, Zhang L, Langdon WY, Torrelles JB, Lipkowitz S, Zhang J. Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia. J Exp Med 2020; 217:133674. [PMID: 31999304 PMCID: PMC7144527 DOI: 10.1084/jem.20182091] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/26/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Aberrant NLRP3 inflammasome activation contributes to the development of endotoxemia. The importance of negative regulation of NLRP3 inflammasomes remains poorly understood. Here, we show that the E3 ubiquitin ligase Cbl-b is essential for preventing endotoxemia induced by a sub-lethal dose of LPS via a caspase-11/NLRP3-dependent manner. Further studies show that NLRP3 undergoes both K63- and K48-linked polyubiquitination. Cbl-b binds to the K63-ubiquitin chains attached to the NLRP3 leucine-rich repeat domain (LRR) via its ubiquitin-associated region (UBA) and then targets NLRP3 at K496 for K48-linked ubiquitination and proteasome-mediated degradation. We also identify RNF125 as an additional E3 ubiquitin ligase that initiates K63-linked ubiquitination of the NLRP3 LRR domain. Therefore, NLRP3 is sequentially ubiquitinated by K63- and K48-linked ubiquitination, thus keeping the NLRP3 inflammasomes in check and restraining endotoxemia.
Collapse
Affiliation(s)
- Juan Tang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Sha Tu
- Department of Pathology, University of Iowa, Iowa City, IA.,Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Guoxin Lin
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH.,Department of Pathology, University of Iowa, Iowa City, IA.,Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hui Guo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH.,Department of Pathology, University of Iowa, Iowa City, IA
| | - Chengkai Yan
- Department of Pathology, University of Iowa, Iowa City, IA
| | - Qingjun Liu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Ling Huang
- Department of Pathology, University of Iowa, Iowa City, IA
| | - Na Tang
- Department of Pathology, University of Iowa, Iowa City, IA
| | - Yizhi Xiao
- Department of Pathology, University of Iowa, Iowa City, IA
| | - R Marshall Pope
- Proteomics Facility, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Brian M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - John S Gunn
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH
| | - Wallace Y Langdon
- School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Stanley Lipkowitz
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jian Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH.,Department of Pathology, University of Iowa, Iowa City, IA
| |
Collapse
|
4
|
Soliman SHA, Stark AE, Gardner ML, Harshman SW, Breece CC, Amari F, Orlacchio A, Chen M, Tessari A, Martin JA, Visone R, Freitas MA, La Perle KMD, Palmieri D, Coppola V. Tagging enhances histochemical and biochemical detection of Ran Binding Protein 9 in vivo and reveals its interaction with Nucleolin. Sci Rep 2020; 10:7138. [PMID: 32346083 PMCID: PMC7188826 DOI: 10.1038/s41598-020-64047-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
The lack of tools to reliably detect RanBP9 in vivo has significantly hampered progress in understanding the biological functions of this scaffold protein. We report here the generation of a novel mouse strain, RanBP9-TT, in which the endogenous protein is fused with a double (V5-HA) epitope tag at the C-terminus. We show that the double tag does not interfere with the essential functions of RanBP9. In contrast to RanBP9 constitutive knock-out animals, RanBP9-TT mice are viable, fertile and do not show any obvious phenotype. The V5-HA tag allows unequivocal detection of RanBP9 both by IHC and WB. Importantly, immunoprecipitation and mass spectrometry analyses reveal that the tagged protein pulls down known interactors of wild type RanBP9. Thanks to the increased detection power, we are also unveiling a previously unknown interaction with Nucleolin, a protein proposed as an ideal target for cancer treatment. In summary, we report the generation of a new mouse line in which RanBP9 expression and interactions can be reliably studied by the use of commercially available αtag antibodies. The use of this line will help to overcome some of the existing limitations in the study of RanBP9 and potentially unveil unknown functions of this protein in vivo such as those linked to Nucleolin.
Collapse
Affiliation(s)
- Shimaa H A Soliman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
- Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti, Italy
| | - Aaron E Stark
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Miranda L Gardner
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Sean W Harshman
- Air Force Research Laboratory, Wright-Patterson AFB, 45433, Ohio, USA
| | - Chelssie C Breece
- Department of Veterinary Biosciences and Comparative Pathology & Mouse Phenotyping Shared Resource, College of Veterinary Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, 43210, Ohio, USA
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Min Chen
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Jennifer A Martin
- Air Force Research Laboratory, Wright-Patterson AFB, 45433, Ohio, USA
| | - Rosa Visone
- Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti, Italy
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Krista M D La Perle
- Department of Veterinary Biosciences and Comparative Pathology & Mouse Phenotyping Shared Resource, College of Veterinary Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, 43210, Ohio, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA.
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, USA.
| |
Collapse
|
5
|
Sakamoto K, Rädler PD, Wehde BL, Triplett AA, Shrestha H, Ferraiuolo RM, Amari F, Coppola V, Klinakis A, Efstratiadis A, Wagner KU. Efficient tissue-type specific expression of target genes in a tetracycline-controlled manner from the ubiquitously active Eef1a1 locus. Sci Rep 2020; 10:207. [PMID: 31937792 PMCID: PMC6959320 DOI: 10.1038/s41598-019-57052-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022] Open
Abstract
Using an efficient gene targeting approach, we developed a novel mouse line that expresses the tetracycline-controlled transactivator (tTA) from the constitutively active Eef1a1 locus in a Cre recombinase-inducible manner. The temporally and spatially controlled expression of the EF1-LSL-tTA knockin and activation of tTA-driven responder transgenes was tested using four transgenic lines that express Cre under tissue-specific promoters of the pancreas, mammary gland and other secretory tissues, as well as an interferon-inducible promoter. In all models, the endogenous Eef1a1 promoter facilitated a cell-type-specific activation of target genes at high levels without exogenous enhancer elements. The applicability of the EF1-LSL-tTA strain for biological experiments was tested in two studies related to mammary gland development and tumorigenesis. First, we validated the crucial role of active STAT5 as a survival factor for functionally differentiated epithelial cells by expressing a hyperactive STAT5 mutant in the mammary gland during postlactational remodeling. In a second experiment, we assessed the ability of the EF1-tTA to initiate tumor formation through upregulation of mutant KRAS. The collective results show that the EF1-LSL-tTA knockin line is a versatile genetic tool that can be applied to constitutively express transgenes in specific cell types to examine their biological functions at defined developmental stages.
Collapse
Affiliation(s)
- Kazuhito Sakamoto
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198-5950, USA
| | - Patrick D Rädler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198-5950, USA
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R, EL01TM, Detroit, MI, 48201, USA
| | - Barbara L Wehde
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198-5950, USA
| | - Aleata A Triplett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198-5950, USA
| | - Hridaya Shrestha
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R, EL01TM, Detroit, MI, 48201, USA
| | - Rosa-Maria Ferraiuolo
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R, EL01TM, Detroit, MI, 48201, USA
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Apostolos Klinakis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Argiris Efstratiadis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R, EL01TM, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Orlacchio A, Stark AE, Foray C, Amari F, Sheetz T, Reese E, Tessari A, La Perle K, Palmieri D, Tsichlis PN, Coppola V. Genetic ablation of interacting with Spt6 (Iws1) causes early embryonic lethality. PLoS One 2018; 13:e0201030. [PMID: 30208029 PMCID: PMC6135376 DOI: 10.1371/journal.pone.0201030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/06/2018] [Indexed: 01/12/2023] Open
Abstract
IWS1 is an RNA-polymerase II (RNAPII)-associated transcription elongation factor whose biological functions are poorly characterized. To shed some light on the function of this protein at the organismal level, we performed a systematic tissue analysis of its expression and generated Iws1-deficient mice. A thorough immunohistochemical characterization shows that IWS1 protein is present in the nucleus of all cells in most of the examined tissues, with few notable exceptions. We also report that ablation of Iws1 consistently causes lethality at the pre-implantation stage with high expression of the gene in fertilized oocytes. In summary, we are providing evidence that Iws1 is expressed in all adult organs and it is an essential gene for mouse embryonic development.
Collapse
Affiliation(s)
- Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Aaron E. Stark
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Genetically Engineered Mouse Modeling Core, The Ohio State University, Columbus, Ohio, United States of America
| | - Claudia Foray
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Foued Amari
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Genetically Engineered Mouse Modeling Core, The Ohio State University, Columbus, Ohio, United States of America
| | - Tyler Sheetz
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Erika Reese
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Krista La Perle
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comparative Pathology & Mouse Phenotyping Shared Resource, Columbus, Ohio, United States of America
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Philip N. Tsichlis
- Molecular Oncology Research Institute, Tufts Medical School, Boston, MA, United States of America
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
7
|
Azevedo-Pouly ACP, Sutaria DS, Jiang J, Elgamal OA, Amari F, Allard D, Grippo PJ, Coppola V, Schmittgen TD. miR-216 and miR-217 expression is reduced in transgenic mouse models of pancreatic adenocarcinoma, knockout of miR-216/miR-217 host gene is embryonic lethal. Funct Integr Genomics 2016; 17:203-212. [PMID: 27541609 DOI: 10.1007/s10142-016-0512-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/20/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023]
Abstract
Mice harboring a G12D activating Kras mutation are among the most heavily studied models in the field of pancreatic adenocarcinoma (PDAC) research. miRNAs are differentially expressed in PDAC from patients and mouse models of PDAC. To better understand the relationship that Kras activation has on miRNA expression, we profiled the expression of 629 miRNAs in RNA isolated from the pancreas of control, young, and old P48+/Cre;LSL-KRASG12D as well as PDX-1-Cre;LSL-KRASG12D mice. One hundred of the differentially expressed miRNAs had increased expression in the advanced disease (old) P48+/Cre;LSL-KRASG12D compared to wild-type mice. Interestingly, the expression of three miRNAs, miR-216a, miR-216b, and miR-217, located within a ∼30-kbp region on 11qA3.3, decreased with age (and phenotype severity) in these mice. miR-216/-217 expression was also evaluated in another acinar-specific ELa-KrasG12D mouse model and was downregulated as well. As miR-216/-217 are acinar enriched, reduced in human PDAC and target KRAS, we hypothesized that they may maintain acinar differentiation or represent tumor suppressive miRNAs. To test this hypothesis, we deleted a 27.9-kbp region of 11qA3.3 containing the miR-216/-217 host gene in the mouse's germ line. We report that germ line deletion of this cluster is embryonic lethal in the mouse. We estimate that lethality occurs shortly after E9.5. qPCR analysis of the miR-216b and miR-217 expression in the heterozygous animals showed no difference in expression, suggesting haplosufficiency by some type of compensatory mechanism. We present the differential miRNA expression in KrasG12D transgenic mice and report lethality from deletion of the miR-216/-217 host gene in the mouse's germ line.
Collapse
Affiliation(s)
- Ana Clara P Azevedo-Pouly
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ola A Elgamal
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Foued Amari
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Paul J Grippo
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Vincenzo Coppola
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas D Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Unudurthi SD, Wu X, Qian L, Amari F, Onal B, Li N, Makara MA, Smith SA, Snyder J, Fedorov VV, Coppola V, Anderson ME, Mohler PJ, Hund TJ. Two-Pore K+ Channel TREK-1 Regulates Sinoatrial Node Membrane Excitability. J Am Heart Assoc 2016; 5:e002865. [PMID: 27098968 PMCID: PMC4859279 DOI: 10.1161/jaha.115.002865] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Two‐pore K+ channels have emerged as potential targets to selectively regulate cardiac cell membrane excitability; however, lack of specific inhibitors and relevant animal models has impeded the effort to understand the role of 2‐pore K+ channels in the heart and their potential as a therapeutic target. The objective of this study was to determine the role of mechanosensitive 2‐pore K+ channel family member TREK‐1 in control of cardiac excitability. Methods and Results Cardiac‐specific TREK‐1–deficient mice (αMHC‐Kcnkf/f) were generated and found to have a prevalent sinoatrial phenotype characterized by bradycardia with frequent episodes of sinus pause following stress. Action potential measurements from isolated αMHC‐Kcnk2f/f sinoatrial node cells demonstrated decreased background K+ current and abnormal sinoatrial cell membrane excitability. To identify novel pathways for regulating TREK‐1 activity and sinoatrial node excitability, mice expressing a truncated allele of the TREK‐1–associated cytoskeletal protein βIV‐spectrin (qv4J mice) were analyzed and found to display defects in cell electrophysiology as well as loss of normal TREK‐1 membrane localization. Finally, the βIV‐spectrin/TREK‐1 complex was found to be downregulated in the right atrium from a canine model of sinoatrial node dysfunction and in human cardiac disease. Conclusions These findings identify a TREK‐1–dependent pathway essential for normal sinoatrial node cell excitability that serves as a potential target for selectively regulating sinoatrial node cell function.
Collapse
Affiliation(s)
- Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Xiangqiong Wu
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Lan Qian
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Foued Amari
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Birce Onal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Ning Li
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Michael A Makara
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sakima A Smith
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jedidiah Snyder
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Vadim V Fedorov
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Vincenzo Coppola
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Mark E Anderson
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| |
Collapse
|