1
|
Williams MD, Joglekar MV, Satoor SN, Wong W, Keramidaris E, Rixon A, O'Connell P, Hawthorne WJ, Mitchell GM, Hardikar AA. Epigenetic and Transcriptome Profiling Identifies a Population of Visceral Adipose-Derived Progenitor Cells with the Potential to Differentiate into an Endocrine Pancreatic Lineage. Cell Transplant 2018; 28:89-104. [PMID: 30376726 PMCID: PMC6322142 DOI: 10.1177/0963689718808472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by the loss of insulin-producing β-cells in the pancreas. T1D can be treated using cadaveric islet transplantation, but this therapy is severely limited by a lack of pancreas donors. To develop an alternative cell source for transplantation therapy, we carried out the epigenetic characterization in nine different adult mouse tissues and identified visceral adipose-derived progenitors as a candidate cell population. Chromatin conformation, assessed using chromatin immunoprecipitation (ChIP) sequencing and validated by ChIP-polymerase chain reaction (PCR) at key endocrine pancreatic gene promoters, revealed similarities between visceral fat and endocrine pancreas. Multiple techniques involving quantitative PCR, in-situ PCR, confocal microscopy, and flow cytometry confirmed the presence of measurable (2-1000-fold over detectable limits) pancreatic gene transcripts and mesenchymal progenitor cell markers (CD73, CD90 and CD105; >98%) in visceral adipose tissue-derived mesenchymal cells (AMCs). The differentiation potential of AMCs was explored in transgenic reporter mice expressing green fluorescent protein (GFP) under the regulation of the Pdx1 (pancreatic and duodenal homeobox-1) gene promoter. GFP expression was measured as an index of Pdx1 promoter activity to optimize culture conditions for endocrine pancreatic differentiation. Differentiated AMCs demonstrated their capacity to induce pancreatic endocrine genes as evidenced by increased GFP expression and validated using TaqMan real-time PCR (at least 2-200-fold relative to undifferentiated AMCs). Human AMCs differentiated using optimized protocols continued to produce insulin following transplantation in NOD/SCID mice. Our studies provide a systematic analysis of potential islet progenitor populations using genome-wide profiling studies and characterize visceral adipose-derived cells for replacement therapy in diabetes.
Collapse
Affiliation(s)
- Michael D Williams
- 1 NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia.,2 Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,3 O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Mugdha V Joglekar
- 1 NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Sarang N Satoor
- 1 NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Wilson Wong
- 1 NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Effie Keramidaris
- 3 O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Amanda Rixon
- 3 O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,4 Experimental Medical and Surgical Unit (EMSU), St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Philip O'Connell
- 5 The Center for Transplant and Renal Research, Westmead Institute of Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Wayne J Hawthorne
- 5 The Center for Transplant and Renal Research, Westmead Institute of Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Geraldine M Mitchell
- 2 Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,3 O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,6 Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Anandwardhan A Hardikar
- 1 NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
2
|
Sackett SD, Rodriguez A, Odorico JS. The Nexus of Stem Cell-Derived Beta-Cells and Genome Engineering. Rev Diabet Stud 2017. [PMID: 28632820 DOI: 10.1900/rds.2017.14.39] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetes, type 1 and type 2 (T1D and T2D), are diseases of epidemic proportions, which are complicated and defined by genetics, epigenetics, environment, and lifestyle choices. Current therapies consist of whole pancreas or islet transplantation. However, these approaches require life-time immunosuppression, and are compounded by the paucity of available donors. Pluripotent stem cells have advanced research in the fields of stem cell biology, drug development, disease modeling, and regenerative medicine, and importantly allows for the interrogation of therapeutic interventions. Recent developments in beta-cell differentiation and genomic modifications are now propelling investigations into the mechanisms behind beta-cell failure and autoimmunity, and offer new strategies for reducing the propensity for immunogenicity. This review discusses the derivation of endocrine lineage cells from human pluripotent stem cells for the treatment of diabetes, and how the editing or manipulation of their genomes can transcend many of the remaining challenges of stem cell technologies, leading to superior transplantation and diabetes drug discovery platforms.
Collapse
Affiliation(s)
- Sara D Sackett
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| | - Aida Rodriguez
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| | - Jon S Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| |
Collapse
|