1
|
Duffraisse M, Paul R, Carnesecchi J, Hudry B, Banreti A, Reboulet J, Ajuria L, Lohmann I, Merabet S. Role of a versatile peptide motif controlling Hox nuclear export and autophagy in the Drosophila fat body. J Cell Sci 2020; 133:jcs241943. [PMID: 32878938 DOI: 10.1242/jcs.241943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Hox proteins are major regulators of embryonic development, acting in the nucleus to regulate the expression of their numerous downstream target genes. By analyzing deletion forms of the Drosophila Hox protein Ultrabithorax (Ubx), we identified the presence of an unconventional nuclear export signal (NES) that overlaps with a highly conserved motif originally described as mediating the interaction with the PBC proteins, a generic and crucial class of Hox transcriptional cofactors that act in development and cancer. We show that this unconventional NES is involved in the interaction with the major exportin protein CRM1 (also known as Embargoed in flies) in vivo and in vitro We find that this interaction is tightly regulated in the Drosophila fat body to control the autophagy-repressive activity of Ubx during larval development. The role of the PBC interaction motif as part of an unconventional NES was also uncovered in other Drosophila and human Hox proteins, highlighting the evolutionary conservation of this novel function. Together, our results reveal the extreme molecular versatility of a unique short peptide motif for controlling the context-dependent activity of Hox proteins both at transcriptional and non-transcriptional levels.
Collapse
Affiliation(s)
- Marilyne Duffraisse
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Rachel Paul
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Julie Carnesecchi
- Centre for Organismal Studies, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Bruno Hudry
- Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France
| | - Agnes Banreti
- Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France
| | - Jonathan Reboulet
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Leiore Ajuria
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Ingrid Lohmann
- Centre for Organismal Studies, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| |
Collapse
|
2
|
Cooperation of axial and sex specific information controls Drosophila female genitalia growth by regulating the Decapentaplegic pathway. Dev Biol 2019; 454:145-155. [DOI: 10.1016/j.ydbio.2019.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/18/2023]
|
3
|
Bischof J, Duffraisse M, Furger E, Ajuria L, Giraud G, Vanderperre S, Paul R, Björklund M, Ahr D, Ahmed AW, Spinelli L, Brun C, Basler K, Merabet S. Generation of a versatile BiFC ORFeome library for analyzing protein-protein interactions in live Drosophila. eLife 2018; 7:38853. [PMID: 30247122 PMCID: PMC6177257 DOI: 10.7554/elife.38853] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/18/2018] [Indexed: 11/24/2022] Open
Abstract
Transcription factors achieve specificity by establishing intricate interaction networks that will change depending on the cell context. Capturing these interactions in live condition is however a challenging issue that requires sensitive and non-invasive methods. We present a set of fly lines, called ‘multicolor BiFC library’, which covers most of the Drosophila transcription factors for performing Bimolecular Fluorescence Complementation (BiFC). The multicolor BiFC library can be used to probe two different binary interactions simultaneously and is compatible for large-scale interaction screens. The library can also be coupled with established Drosophila genetic resources to analyze interactions in the developmentally relevant expression domain of each protein partner. We provide proof of principle experiments of these various applications, using Hox proteins in the live Drosophila embryo as a case study. Overall this novel collection of ready-to-use fly lines constitutes an unprecedented genetic toolbox for the identification and analysis of protein-protein interactions in vivo.
Collapse
Affiliation(s)
- Johannes Bischof
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Edy Furger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | | | | | | | - Christine Brun
- INSERM, Aix-Marseille Université, Marseille, France.,TAGC, Centre National de la Recherche Scientifique, Marseille, France
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
4
|
Bimolecular Fluorescence Complementation (BiFC) Analysis of Protein-Protein Interactions and Assessment of Subcellular Localization in Live Cells. Methods Mol Biol 2016; 1474:153-70. [PMID: 27515079 DOI: 10.1007/978-1-4939-6352-2_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bimolecular fluorescence complementation (BiFC) is a fluorescence imaging technique used to visualize protein-protein interactions (PPIs) in live cells and animals. One unique application of BiFC is to reveal subcellular localization of PPIs. The superior signal-to-noise ratio of BiFC in comparison with fluorescence resonance energy transfer or bioluminescence resonance energy transfer enables its wide applications. Here, we describe how confocal microscopy can be used to detect and quantify PPIs and their subcellular localization. We use basic leucine zipper transcription factor proteins as an example to provide a step-by-step BiFC protocol using a Nikon A1 confocal microscope and NIS-Elements imaging software. The protocol given below can be readily adapted for use with other confocal microscopes or imaging software.
Collapse
|
5
|
Papadopoulos DK, Krmpot AJ, Nikolić SN, Krautz R, Terenius L, Tomancak P, Rigler R, Gehring WJ, Vukojević V. Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy. Mech Dev 2015; 138 Pt 2:218-225. [PMID: 26428533 DOI: 10.1016/j.mod.2015.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 11/25/2022]
Abstract
Hox genes encode transcription factors that control the formation of body structures, segment-specifically along the anterior-posterior axis of metazoans. Hox transcription factors bind nuclear DNA pervasively and regulate a plethora of target genes, deploying various molecular mechanisms that depend on the developmental and cellular context. To analyze quantitatively the dynamics of their DNA-binding behavior we have used confocal laser scanning microscopy (CLSM), single-point fluorescence correlation spectroscopy (FCS), fluorescence cross-correlation spectroscopy (FCCS) and bimolecular fluorescence complementation (BiFC). We show that the Hox transcription factor Sex combs reduced (Scr) forms dimers that strongly associate with its specific fork head binding site (fkh250) in live salivary gland cell nuclei. In contrast, dimers of a constitutively inactive, phospho-mimicking variant of Scr show weak, non-specific DNA-binding. Our studies reveal that nuclear dynamics of Scr is complex, exhibiting a changing landscape of interactions that is difficult to characterize by probing one point at a time. Therefore, we also provide mechanistic evidence using massively parallel FCS (mpFCS). We found that Scr dimers are predominantly formed on the DNA and are equally abundant at the chromosomes and an introduced multimeric fkh250 binding-site, indicating different mobilities, presumably reflecting transient binding with different affinities on the DNA. Our proof-of-principle results emphasize the advantages of mpFCS for quantitative characterization of fast dynamic processes in live cells.
Collapse
Affiliation(s)
| | - Aleksandar J Krmpot
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden; Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia
| | - Stanko N Nikolić
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden; Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia
| | - Robert Krautz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Lars Terenius
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden
| | - Pavel Tomancak
- Max-Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Rudolf Rigler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Laboratory of Biomedical Optics, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland
| | - Walter J Gehring
- Department of Cell Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Vladana Vukojević
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden.
| |
Collapse
|