1
|
Zheng Q, Cui M, Xiao J, Yang S, Chen T, Shi Y, Hu Y, Liao Q. Glycomic profiling of parathyroid neoplasms via lectin microarray analysis. Endocrine 2024:10.1007/s12020-024-04107-5. [PMID: 39565545 DOI: 10.1007/s12020-024-04107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE Parathyroid carcinoma (PC) is a rare malignancy with a poor prognosis. Diagnosis of PC is often difficult in clinical practice and efficient diagnostic markers are still needed for differential diagnosis. Aberrant glycosylations of glycoproteins were identified with lectin microarray in various cancers, while relevant information is lacking in PC. METHODS In this study, 8 PC and 6 parathyroid adenoma (PA) tissues were assessed using a microarray consisting of 70 lectins. Overall lectin-specific glycosylation patterns were compared between PA and PC tissues. Lectins with significant differential response between PC and PA were further validated by lectin histochemistry. RESULTS The difference in signal intensities was found in 71.4% (50/70) of the lectins between the two groups (P < 0.05). The vast majority of PCs had higher intensity signals than PAs (PCs vs. PAs, ratio >1) and amaranthus caudatus (ACL) showed the most significantly different response between them (ratio = 2.45). Lectin histochemistry further confirmed higher ACL intensity in PCs than in PAs. The differentially expressed glycans in PC tissues were primarily glucose, mannose, and galactose-based. CONCLUSION PC presented unique glycomic features and ACL may serve as a candidate diagnostic marker for PC.
Collapse
Affiliation(s)
- Qingyuan Zheng
- Department of General Surgery, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinheng Xiao
- Department of General Surgery, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sen Yang
- Department of General Surgery, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tianqi Chen
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanan Shi
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya Hu
- Department of General Surgery, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
3
|
Li H, Peralta AG, Schoffelen S, Hansen AH, Arnsdorf J, Schinn SM, Skidmore J, Choudhury B, Paulchakrabarti M, Voldborg BG, Chiang AW, Lewis NE. LeGenD: determining N-glycoprofiles using an explainable AI-leveraged model with lectin profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587044. [PMID: 38585977 PMCID: PMC10996628 DOI: 10.1101/2024.03.27.587044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Glycosylation affects many vital functions of organisms. Therefore, its surveillance is critical from basic science to biotechnology, including biopharmaceutical development and clinical diagnostics. However, conventional glycan structure analysis faces challenges with throughput and cost. Lectins offer an alternative approach for analyzing glycans, but they only provide glycan epitopes and not full glycan structure information. To overcome these limitations, we developed LeGenD, a lectin and AI-based approach to predict N-glycan structures and determine their relative abundance in purified proteins based on lectin-binding patterns. We trained the LeGenD model using 309 glycoprofiles from 10 recombinant proteins, produced in 30 glycoengineered CHO cell lines. Our approach accurately reconstructed experimentally-measured N-glycoprofiles of bovine Fetuin B and IgG from human sera. Explanatory AI analysis with SHapley Additive exPlanations (SHAP) helped identify the critical lectins for glycoprofile predictions. Our LeGenD approach thus presents an alternative approach for N-glycan analysis.
Collapse
Affiliation(s)
- Haining Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelo G. Peralta
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sanne Schoffelen
- National Biologics Facility Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby Denmark
| | - Anders Holmgaard Hansen
- National Biologics Facility Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby Denmark
| | - Johnny Arnsdorf
- National Biologics Facility Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby Denmark
| | - Song-Min Schinn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan Skidmore
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Biswa Choudhury
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mousumi Paulchakrabarti
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bjorn G. Voldborg
- National Biologics Facility Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby Denmark
| | - Austin W.T. Chiang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan E. Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Li S, Zeng X, Tang S, Li X, Zhang G, Li M, Zeng X, Hu C. Retrospective screening of serum IgG glycosylation biomarker for primary Sjögren's syndrome using lectin microarray. PeerJ 2023; 11:e14853. [PMID: 36852221 PMCID: PMC9961092 DOI: 10.7717/peerj.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
Background Primary Sjögren's syndrome (PSS) is a systemic autoimmune disease resulting in significant loss of systemic gland secretory function. IgG glycosylation abnormalities had been found to play important roles in autoimmune diseases. Here, we aim to explore the specific changes of IgG glycosylation in PSS patient serum that could serve as potential biomarkers for disease diagnosis and differential diagnosis. Method From 2012 to 2018, patients diagnosed with PSS or primary biliary cholangitis (PBC) admitted consecutively to the department of Rheumatology at Peking Union Medical College Hospital were retrospectively included in this study. Glycan profiles of serum IgG from 40 PSS patients, 50 PBC patients, and 38 healthy controls were detected with lectin microarray containing 56 lectins. Lectins with significantly different signal intensity among groups were selected and validated by lectin blot assay. Results Lectin microarray analysis revealed that binding levels of Amaranthus Caudatus Lectin (ACL, prefers glycan Galβ3GalNAc, P = 0.011), Morniga M Lectin (MNA-M, prefers glycan mannose. P = 0.013), and Lens Culinaris Agglutinin (LCA, prefers glycan fucose) were significantly increased, while Salvia sclarea Agglutinin (SSA, prefers glycan sialylation, P = 0.001) was significantly decreased in PSS patients compared to PBC group. Compared to healthy controls, MNA-M (P = 0.001) and LCA (P = 0.028) were also significantly increased, while Phaseolus Vulgaris Erythroagglutinin and Phaseolus Vulgaris Leucoagglutinin (PHA-E and PHA-L, prefer glycan galactose, P = 0.004 and 0.006) were significantly decreased in PSS patients. The results of LCA and MNA-M were further confirmed using lectin blot assay. Conclusion Changes in serum IgG glycosylation in PSS increased binding levels of LCA and MNA-M lectins using microarray techniques compared to PBC patients and healthy controls, which could provide potential diagnostic value. Increased core fucose and mannose alteration of IgG may play important roles in PSS disease.
Collapse
Affiliation(s)
- Siting Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaoli Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China,Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shiyi Tang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Xi Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China,Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guoyuan Zhang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Chaojun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Deng X, Liu X, Zhang Y, Ke D, Yan R, Wang Q, Tian X, Li M, Zeng X, Hu C. Changes of serum IgG glycosylation patterns in rheumatoid arthritis. Clin Proteomics 2023; 20:7. [PMID: 36810000 PMCID: PMC9942403 DOI: 10.1186/s12014-023-09395-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/21/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND RA is a common chronic and systemic autoimmune disease, and the diagnosis is based significantly on autoantibody detection. This study aims to investigate the glycosylation profile of serum IgG in RA patients using high-throughput lectin microarray technology. METHOD Lectin microarray containing 56 lectins was applied to detect and analyze the expression profile of serum IgG glycosylation in 214 RA patients, 150 disease controls (DC), and 100 healthy controls (HC). Significant differential glycan profiles between the groups of RA and DC/HC as well as RA subgroups were explored and verified by lectin blot technique. The prediction models were created to evaluate the feasibility of those candidate biomarkers. RESULTS As a comprehensive analysis of lectin microarray and lectin blot, results showed that compare with HC or DC groups, serum IgG from RA patients had a higher affinity to the SBA lectin (recognizing glycan GalNAc). For RA subgroups, RA-seropositive group had higher affinities to the lectins of MNA-M (recognizing glycan mannose) and AAL (recognizing glycan fucose), and RA-ILD group had higher affinities to the lectins of ConA (recognizing glycan mannose) and MNA-M while a lower affinity to the PHA-E (recognizing glycan Galβ4GlcNAc) lectin. The predicted models indicated corresponding feasibility of those biomarkers. CONCLUSION Lectin microarray is an effective and reliable technique for analyzing multiple lectin-glycan interactions. RA, RA-seropositive, and RA-ILD patients exhibit distinct glycan profiles, respectively. Altered levels of glycosylation may be related to the pathogenesis of the disease, which could provide a direction for new biomarkers identification.
Collapse
Affiliation(s)
- Xiaoyue Deng
- grid.506261.60000 0001 0706 7839Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730 China ,grid.424020.00000 0004 0369 1054National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, 100730 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839Medical Science Research Center (MRC), Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730 China
| | - Xiaomin Liu
- Department of Rheumatology, Shunyi District Hospital, Beijing, 101300 China
| | - Yan Zhang
- Department of Rheumatology, Shunyi District Hospital, Beijing, 101300 China
| | - Dan Ke
- Department of Rheumatology, Shunyi District Hospital, Beijing, 101300 China
| | - Rui Yan
- Department of Rheumatology, Shunyi District Hospital, Beijing, 101300 China
| | - Qian Wang
- grid.506261.60000 0001 0706 7839Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730 China ,grid.424020.00000 0004 0369 1054National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, 100730 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730 China
| | - Xinping Tian
- grid.506261.60000 0001 0706 7839Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730 China ,grid.424020.00000 0004 0369 1054National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, 100730 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730 China
| | - Mengtao Li
- grid.506261.60000 0001 0706 7839Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730 China ,grid.424020.00000 0004 0369 1054National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, 100730 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730 China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China. .,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, 100730, China. .,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| | - Chaojun Hu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China. .,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, 100730, China. .,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| |
Collapse
|
6
|
Zhang Y, Zhang S, Liu J, Zhang Y, Liu Y, Shen S, Tian F, Yan G, Gao Y, Qin X. Identification of serum glycobiomarkers for Hepatocellular Carcinoma using lectin microarrays. Front Immunol 2022; 13:973993. [PMID: 36341438 PMCID: PMC9634732 DOI: 10.3389/fimmu.2022.973993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is the sixth most commonly occurring cancer and ranks third in mortality among all malignant tumors; as a result, HCC represents a major human health issue. Although aberrant glycosylation is clearly implicated in HCC, changes in serum immunoglobulin (Ig)G and IgM glycosylation have not been comprehensively characterized. In this study, we used lectin microarrays to evaluate differences in serum IgG and IgM glycosylation among patients with HCC, hepatitis B cirrhosis (HBC), or chronic hepatitis B (CHB), and healthy normal controls (NC) and aimed to establish a model to improve the diagnostic accuracy of HCC. Methods In total, 207 serum samples collected in 2019–2020 were used for lectin microarray analyses, including 97 cases of HCC, 50 cases of HBC, 30 cases of CHB, and 30 cases of NC. Samples were randomly divided into training and validation groups at a 2:1 ratio. Training group data were used to investigate the diagnostic value of the relative signal intensity for the lectin probe combined with alpha-fetoprotein (AFP). The efficacy of models for HCC diagnosis were analyzed by receiver operating characteristic (ROC) curves. Results In terms of IgG, a model combining three lectins and AFP had good diagnostic accuracy for HCC. The area under the ROC curve was 0.96 (P < 0.05), the sensitivity was 82.54%, and the specificity was 100%. In terms of IgM, a model including one lectin combined with AFP had an area under the curve of 0.90 (P < 0.05), sensitivity of 75.41%, and specificity of 100%. Conclusion Estimation of serum IgG and IgM glycosylation could act as complementary techniques to improve diagnosis and shed light on the occurrence and development of the HCC
Collapse
Affiliation(s)
- Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Sihua Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yunli Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanjie Liu
- Department of Laboratory Medicine, Chaoyang Central Hospital, Chaoyang, China
| | - Shuang Shen
- Department of Laboratory Medicine, Huludao Central Hospital, Huludao, China
| | - Fangfang Tian
- Department of Laboratory Medicine, Fuxin Central Hospital, Fuxin, China
| | - Gaobo Yan
- Department of Laboratory Medicine, Dandong Central Hospital, Dandong, China
| | - Yongqing Gao
- Department of Laboratory Medicine, Tieling Central Hospital, Tieling, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
- *Correspondence: Xiaosong Qin,
| |
Collapse
|
7
|
Naithani S, Komath SS, Nonomura A, Govindjee G. Plant lectins and their many roles: Carbohydrate-binding and beyond. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153531. [PMID: 34601337 DOI: 10.1016/j.jplph.2021.153531] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Lectins are ubiquitous proteins that reversibly bind to specific carbohydrates and, thus, serve as readers of the sugar code. In photosynthetic organisms, lectin family proteins play important roles in capturing and releasing photosynthates via an endogenous lectin cycle. Often, lectin proteins consist of one or more lectin domains in combination with other types of domains. This structural diversity of lectins is the basis for their current classification, which is consistent with their diverse functions in cell signaling associated with growth and development, as well as in the plant's response to biotic, symbiotic, and abiotic stimuli. Furthermore, the lectin family shows evolutionary expansion that has distinct clade-specific signatures. Although the function(s) of many plant lectin family genes are unknown, studies in the model plant Arabidopsis thaliana have provided insights into their diverse roles. Here, we have used a biocuration approach rooted in the critical review of scientific literature and information available in the public genomic databases to summarize the expression, localization, and known functions of lectins in Arabidopsis. A better understanding of the structure and function of lectins is expected to aid in improving agricultural productivity through the manipulation of candidate genes for breeding climate-resilient crops, or by regulating metabolic pathways by applications of plant growth regulators.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97333, USA.
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Arthur Nonomura
- Department of Chemistry, Northern Arizona University, South San Francisco Street, Flagstaff, AZ, 86011, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
8
|
Zeng X, Li S, Tang S, Li X, Zhang G, Li M, Zeng X, Hu C. Changes of Serum IgG Glycosylation Patterns in Primary Biliary Cholangitis Patients. Front Immunol 2021; 12:669137. [PMID: 34248947 PMCID: PMC8267527 DOI: 10.3389/fimmu.2021.669137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease whose diagnosis is based significantly on autoantibody detection. This study aims to investigate the glycosylation profile of serum IgG in PBC patients using high-throughput lectin microarrays technology. Method Lectin microarray containing 56 lectins was used to detect and analyze the expression of serum IgG glycosylation in 99 PBC patients, 70 disease controls (DCs), and 38 healthy controls (HCs). Significant differences in PBC from control groups as well as across PBC subgroups positive for various autoantibodies were explored and verified by lectin blot technique. Results Lectin microarray detection revealed that compared to DC and HC groups, the specific glycan level of serum IgG sialic acid in PBC patients was increased. For each PBC subgroup, glycan levels of IgG mannose and galactose were decreased in AMA-M2 positive PBC patients compared to the AMA-M2 negative group. IgG N-Acetylgalactosamine (GalNAc) and fucose were decreased in anti-sp100 positive patients. IgG galactose was increased in anti-gp210 positive patients. IgG mannose was decreased in ACA-positive patients. Although the difference in overall sialic acid level was not observed using lectin blot, all results among the above PBC subgroups were consistent with the results of the technique. Conclusion Lectin microarray is an effective and reliable technique for analyzing glycan structure. PBC patients positive for different autoantibody exhibits distinct glycan profile. Altered levels of glycosylation may be related to the occurrence and development of the disease, which could provide a direction for new biomarker identification.
Collapse
Affiliation(s)
- Xiaoli Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID) Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Siting Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID) Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Shiyi Tang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID) Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Xi Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID) Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guoyuan Zhang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID) Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID) Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Chaojun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID) Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
9
|
Tsaneva M, Van Damme EJM. 130 years of Plant Lectin Research. Glycoconj J 2020; 37:533-551. [PMID: 32860551 PMCID: PMC7455784 DOI: 10.1007/s10719-020-09942-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Lectins are proteins with diverse molecular structures that share the ability to recognize and bind specifically and reversibly to carbohydrate structures without changing the carbohydrate moiety. The history of lectins started with the discovery of ricin about 130 years ago but since then our understanding of lectins has dramatically changed. Over the years the research focus was shifted from 'the characterization of carbohydrate-binding proteins' to 'understanding the biological function of lectins'. Nowadays plant lectins attract a lot of attention especially because of their potential for crop improvement and biomedical research, as well as their application as tools in glycobiology. The present review aims to give an overview of plant lectins and their applications, and how the field evolved in the last decades.
Collapse
Affiliation(s)
- Mariya Tsaneva
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
10
|
Lectin-based detection of Escherichia coli and Staphylococcus aureus by flow cytometry. Arch Microbiol 2019; 201:313-324. [DOI: 10.1007/s00203-018-1613-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023]
|
11
|
Abstract
This review is devoted to the analytical application of carbohydrate-binding proteins called lectins. The nature of lectins and the regularities of their specificity with respect to simple sugars and complex carbohydrate-containing biomolecules are discussed. The main areas of the modern analytical application of lectins are described. Lectin-affinity chromatography, histo- and cytochemical approaches, lectin blotting, microarray, and biosensor technologies as well as microplate analysis are considered in detail. Data on the use of lectins for the detection of cells and microorganisms as well as the study of protein glycosylation are summarized. The large potential of lectins as components of analytical systems used for the identification of glycans and the characteristics of their structure are substantiated.
Collapse
Affiliation(s)
- O D Hendrickson
- a A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospect , Moscow , Russia
| | - A V Zherdev
- a A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospect , Moscow , Russia
| |
Collapse
|
12
|
Phaseolus acutifolius Lectin Fractions Exhibit Apoptotic Effects on Colon Cancer: Preclinical Studies Using Dimethilhydrazine or Azoxi-Methane as Cancer Induction Agents. Molecules 2017; 22:molecules22101670. [PMID: 28991196 PMCID: PMC6151564 DOI: 10.3390/molecules22101670] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023] Open
Abstract
Phaseolus acutifolius (Tepary bean) lectins have been studied as cytotoxic molecules on colon cancer cells. The toxicological profile of a Tepary bean lectin fraction (TBLF) has shown low toxicity in experimental animals; exhibiting anti-nutritional effects such as a reduction in body weight gain and a decrease in food intake when using a dose of 50 mg/kg on alternate days for six weeks. Taking this information into account, the focus of this work was to evaluate the effect of the TBLF on colon cancer using 1,2-dimethylhydrazine (DMH) or azoxy-methane/dextran sodium sulfate (AOM/DSS) as colon cancer inductors. Rats were treated with DMH or AOM/DSS and then administered with TBFL (50 mg/kg) for six weeks. TBLF significantly decreased early tumorigenesis triggered by DMH by 70%, but without any evidence of an apoptotic effect. In an independent experiment, AOM/DSS was used to generate aberrant cryptic foci, which decreased by 50% after TBLF treatment. TBLF exhibited antiproliferative and proapoptotic effects related to a decrease of the signal transduction pathway protein Akt in its activated form and an increase of caspase 3 activity, but not to p53 activation. Further studies will deepen our knowledge of specific apoptosis pathways and cellular stress processes such as oxidative damage.
Collapse
|
13
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
14
|
Zamfir AD. Microfluidics-Mass Spectrometry of Protein-Carbohydrate Interactions: Applications to the Development of Therapeutics and Biomarker Discovery. Methods Mol Biol 2017; 1647:109-128. [PMID: 28808998 DOI: 10.1007/978-1-4939-7201-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The functional interactions of carbohydrates and their protein receptors are the basis of biological events critical to the evolution of pathological states. Hence, for the past years, such interactions have become the focus of research for the development of therapeutics and discovery of novel glycan biomarkers based on their binding affinity. Due to the high sensitivity, throughput, reproducibility, and capability to ionize minor species in heterogeneous mixtures, microfluidics-mass spectrometry (MS) has recently emerged as a method of choice in protein-glycan interactomics. In this chapter, a straightforward microfluidics-based MS methodology for the assessment of protein-glycan interactions is presented. The general protocol encompasses: (1) submission of the interacting partners to a binding assay under conditions mimicking the in vivo environment; and (2) screening of the reaction products and their structural characterization by fully automated chip-nanoelectrospray (nanoESI) MS and multistage MS. The first section of the chapter is devoted to describing a method that enables the study of protein-oligosaccharide interactions by chip-nanoESI quadrupole time-of-flight (QTOF) MS and top-down complex analysis by collision-induced dissociation (CID). This section provides the protocol for the determination of the complex formed by standard β-lactoglobulin (BLG) with maltohexaose (Glc6) and recommends as a concrete application the study of the interaction between BLG extracted from human milk with Glc6, considered a ligand able to reduce the allergenicity of this protein. The second part is dedicated to presenting the protocols for the binding assay followed by chip-nanoESI ion trap (ITMS) and electron transfer dissociation (ETD) in combination with CID for protein-ganglioside interactions, using as an example the B subunit of cholera toxin (Ctb5) in interaction with comercially available GM1 species. The methodology described may be successfully applied to native ganglioside mixtures from human brain, in particular for discovery of biomarkers on the basis of their binding affinity.
Collapse
Affiliation(s)
- Alina D Zamfir
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str.1, 300224, Timisoara, Romania.
| |
Collapse
|
15
|
Syed P, Gidwani K, Kekki H, Leivo J, Pettersson K, Lamminmäki U. Role of lectin microarrays in cancer diagnosis. Proteomics 2016; 16:1257-65. [PMID: 26841254 DOI: 10.1002/pmic.201500404] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/22/2022]
Abstract
The majority of cell differentiation associated tumor markers reported to date are either glycoproteins or glycolipids. Despite there being a large number of glycoproteins reported as candidate markers for various cancers, only a handful are approved by the US Food and Drug Administration. Lectins, which bind to the glycan part of the glycoproteins, can be exploited to identify aberrant glycosylation patterns, which in turn would help in enhancing the specificity of cancer diagnosis. Although conventional techniques such as HPLC and MS have been instrumental in performing the glycomic analyses, these techniques lack multiplexity. Lectin microarrays have proved to be useful in studying multiple lectin-glycan interactions in a single experiment and, with the advances made in the field, hold a promise of enabling glycomic profiling of cancers in a fast and efficient manner.
Collapse
Affiliation(s)
- Parvez Syed
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Kamlesh Gidwani
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Henna Kekki
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Janne Leivo
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Kim Pettersson
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| |
Collapse
|