1
|
Ferro F, Spelat R, Pandit A, Martin-Ventura JL, Rabinovich GA, Contessotto P. Glycosylation of blood cells during the onset and progression of atherosclerosis and myocardial infarction. Trends Mol Med 2024; 30:178-196. [PMID: 38142190 DOI: 10.1016/j.molmed.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
Protein glycosylation controls cell-cell and cell-extracellular matrix (ECM) communication in immune, vascular, and inflammatory processes, underlining the critical role of this process in the identification of disease biomarkers and the design of novel therapies. Emerging evidence highlights the critical role of blood cell glycosylation in the pathophysiology of atherosclerosis (ATH) and myocardial infarction (MI). Here, we review the role of glycosylation in the interplay between blood cells, particularly erythrocytes, and endothelial cells (ECs), highlighting the involvement of this critical post/cotranslational modification in settings of cardiovascular disease (CVD). Importantly, we focus on emerging preclinical studies and clinical trials based on glycan-targeted drugs to validate their therapeutic potential. These findings may help establish new trends in preventive medicine and delineate novel targeted therapies in CVD.
Collapse
Affiliation(s)
- Federico Ferro
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Renza Spelat
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland; Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - José L Martin-Ventura
- Vascular Research Laboratory, IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Paolo Contessotto
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland; Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
2
|
Berndsen RH, Castrogiovanni C, Weiss A, Rausch M, Dallinga MG, Miljkovic-Licina M, Klaassen I, Meraldi P, van Beijnum JR, Nowak-Sliwinska P. Anti-angiogenic effects of crenolanib are mediated by mitotic modulation independently of PDGFR expression. Br J Cancer 2019; 121:139-149. [PMID: 31235865 PMCID: PMC6738084 DOI: 10.1038/s41416-019-0498-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
Background Crenolanib is a tyrosine kinase inhibitor targeting PDGFR-α, PDGFR-β and Fms related tyrosine kinase-3 (FLT3) that is currently evaluated in several clinical trials. Although platelet-derived growth factor receptor (PDGFR) signalling pathway is believed to play an important role in angiogenesis and maintenance of functional vasculature, we here demonstrate a direct angiostatic activity of crenolanib independently of PDGFR signalling. Methods The activity of crenolanib on cell viability, migration, sprouting, apoptosis and mitosis was assessed in endothelial cells, tumour cells and fibroblasts. Alterations in cell morphology were determined by immunofluorescence experiments. Flow-cytometry analysis and mRNA expression profiles were used to investigate cell differentiation. In vivo efficacy was investigated in human ovarian carcinoma implanted on the chicken chorioallantoic membrane (CAM). Results Crenolanib was found to inhibit endothelial cell viability, migration and sprout length, and induced apoptosis independently of PDGFR expression. Treated cells showed altered actin arrangement and nuclear aberrations. Mitosis was affected at several levels including mitosis entry and centrosome clustering. Crenolanib suppressed human ovarian carcinoma tumour growth and angiogenesis in the CAM model. Conclusions The PDGFR/FLT3 inhibitor crenolanib targets angiogenesis and inhibits tumour growth in vivo unrelated to PDGFR expression. Based on our findings, we suggest a broad mechanism of action of crenolanib.
Collapse
Affiliation(s)
- Robert H Berndsen
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Lausanne and University of Geneva, Rue Michel-Servet, 1211, Geneva, Switzerland.,Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC-location VUmc, VU University Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Cédric Castrogiovanni
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Geneva, Switzerland
| | - Andrea Weiss
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Lausanne and University of Geneva, Rue Michel-Servet, 1211, Geneva, Switzerland
| | - Magdalena Rausch
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Lausanne and University of Geneva, Rue Michel-Servet, 1211, Geneva, Switzerland
| | - Marchien G Dallinga
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | | | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Geneva, Switzerland.,Translational Research Center in Oncohaematology, Rue Michel-Servet, 1211, Geneva, Switzerland
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC-location VUmc, VU University Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Lausanne and University of Geneva, Rue Michel-Servet, 1211, Geneva, Switzerland. .,Translational Research Center in Oncohaematology, Rue Michel-Servet, 1211, Geneva, Switzerland.
| |
Collapse
|
3
|
Aanhane E, Schulkens IA, Heusschen R, Castricum K, Leffler H, Griffioen AW, Thijssen VL. Different angioregulatory activity of monovalent galectin-9 isoforms. Angiogenesis 2018; 21:545-555. [PMID: 29500586 DOI: 10.1007/s10456-018-9607-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
Abstract
Galectin-9 consists of two peptide-linked carbohydrate recognition domains (CRDs), but alternative splicing and proteolytic processing can give rise to multiple galectin-9 isoforms. Some of these consist of a single CRD and can exert different functions in cell biology. Here, we explored the role of these galectin-9 isoforms in endothelial cell function and angiogenesis. For this, we compared the effects of the two separate CRDs (Gal-9N and Gal-9C) with the tandem repeat galectin-9M on endothelial cell proliferation, migration, sprouting and tube formation in vitro as well as on angiogenesis in vivo using the chicken chorioallantoic membrane (CAM) assay. Galectin-9 isoforms significantly affected proliferation in quiescent endothelial cells and migration in activated endothelial cells. Interestingly, both monovalent gal-9 CRDs displayed opposite effects compared to gal-9M on proliferation and migration. Sprouting was significantly inhibited by gal-9C, while all isoforms appeared to stimulate tube formation. Angiogenesis in vivo was hampered by all three isoforms with predominant effects on vessel length. In general, the isoforms induced only subtle concentration-dependent effects in vitro as well as in vivo. Collectively, the effects of different galectin-9 isoforms in endothelial cell biology depend on the cellular activation status. While opposing effects can be observed on a cellular level in vitro, all galectin-9 isoforms hamper angiogenesis in vivo. This warrants further investigation of the regulatory mechanisms that underlie the diverging roles of galectin-9 isoforms in endothelial cell biology since this could provide therapeutic opportunities.
Collapse
Affiliation(s)
- Ed Aanhane
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Iris A Schulkens
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.,Angiogenesis Laboratory, Department of Radiation Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Roy Heusschen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.,Laboratory of Hematology, GIGA-Research, University of Liège, Liege, Belgium
| | - Kitty Castricum
- Angiogenesis Laboratory, Department of Radiation Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Hakon Leffler
- Section Microbiology, Immunology, Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Victor L Thijssen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands. .,Angiogenesis Laboratory, Department of Radiation Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Kleibeuker EA, Fokas E, Allen PD, Kersemans V, Griffioen AW, Beech J, Im JH, Smart SC, Castricum KC, van den Berg J, Schulkens IA, Hill SA, Harris AL, Slotman BJ, Verheul HM, Muschel RJ, Thijssen VL. Low dose angiostatic treatment counteracts radiotherapy-induced tumor perfusion and enhances the anti-tumor effect. Oncotarget 2016; 7:76613-76627. [PMID: 27780936 PMCID: PMC5363534 DOI: 10.18632/oncotarget.12814] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022] Open
Abstract
The extent of tumor oxygenation is an important factor contributing to the efficacy of radiation therapy (RTx). Interestingly, several preclinical studies have shown benefit of combining RTx with drugs that inhibit tumor blood vessel growth, i.e. angiostatic therapy. Recent findings show that proper scheduling of both treatment modalities allows dose reduction of angiostatic drugs without affecting therapeutic efficacy. We found that whilst low dose sunitinib (20 mg/kg/day) did not affect the growth of xenograft HT29 colon carcinoma tumors in nude mice, the combination with either single dose RTx (1x 5Gy) or fractionated RTx (5x 2Gy/week, up to 3 weeks) substantially hampered tumor growth compared to either RTx treatment alone. To better understand the interaction between RTx and low dose angiostatic therapy, we explored the effects of RTx on tumor angiogenesis and tissue perfusion. DCE-MRI analyses revealed that fractionated RTx resulted in enhanced perfusion after two weeks of treatment. This mainly occurred in the center of the tumor and was accompanied by increased tissue viability and decreased hypoxia. These effects were accompanied by increased expression of the pro-angiogenic growth factors VEGF and PlGF. DCE-MRI and contrast enhanced ultrasonography showed that the increase in perfusion and tissue viability was counteracted by low-dose sunitinib. Overall, these data give insight in the dynamics of tumor perfusion during conventional 2 Gy fractionated RTx and provide a rationale to combine low dose angiostatic drugs with RTx both in the palliative as well as in the curative setting.
Collapse
Affiliation(s)
- Esther A. Kleibeuker
- Department of Radiation Oncology, VU University Medical Centre, De Boelelaan, HV Amsterdam, The Netherlands
- Department of Medical Oncology, VU University Medical Centre, De Boelelaan, HV Amsterdam, The Netherlands
| | - Emmanouil Fokas
- Oxford Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Philip D. Allen
- Oxford Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Veerle Kersemans
- Oxford Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Arjan W. Griffioen
- Department of Medical Oncology, VU University Medical Centre, De Boelelaan, HV Amsterdam, The Netherlands
| | - John Beech
- Oxford Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Jaehong H. Im
- Oxford Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Sean C. Smart
- Oxford Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Kitty C. Castricum
- Department of Radiation Oncology, VU University Medical Centre, De Boelelaan, HV Amsterdam, The Netherlands
| | - Jaap van den Berg
- Department of Radiation Oncology, VU University Medical Centre, De Boelelaan, HV Amsterdam, The Netherlands
| | - Iris A. Schulkens
- Department of Radiation Oncology, VU University Medical Centre, De Boelelaan, HV Amsterdam, The Netherlands
| | - Sally A. Hill
- Oxford Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Adrian L. Harris
- Department of Molecular Oncology, University of Oxford, Oxford, UK
| | - Ben J. Slotman
- Department of Radiation Oncology, VU University Medical Centre, De Boelelaan, HV Amsterdam, The Netherlands
| | - Henk M. Verheul
- Department of Medical Oncology, VU University Medical Centre, De Boelelaan, HV Amsterdam, The Netherlands
| | - Ruth J. Muschel
- Oxford Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Victor L. Thijssen
- Department of Radiation Oncology, VU University Medical Centre, De Boelelaan, HV Amsterdam, The Netherlands
- Department of Medical Oncology, VU University Medical Centre, De Boelelaan, HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
van Beijnum JR, Thijssen VL, Läppchen T, Wong TJ, Verel I, Engbersen M, Schulkens IA, Rossin R, Grüll H, Griffioen AW, Nowak-Sliwinska P. A key role for galectin-1 in sprouting angiogenesis revealed by novel rationally designed antibodies. Int J Cancer 2016; 139:824-35. [PMID: 27062254 DOI: 10.1002/ijc.30131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/03/2016] [Indexed: 11/10/2022]
Abstract
Galectins are carbohydrate binding proteins that function in many key cellular processes. We have previously demonstrated that galectins are essential for tumor angiogenesis and their expression is associated with disease progression. Targeting galectins is therefore a potential anti-angiogenic and anti-cancer strategy. Here, we used a rational approach to generate antibodies against a specific member of this conserved protein family, i.e. galectin-1. We characterized two novel mouse monoclonal antibodies that specifically react with galectin-1 in human, mouse and chicken. We demonstrate that these antibodies are excellent tools to study galectin-1 expression and function in a broad array of biological systems. In a potential diagnostic application, radiolabeled antibodies showed specific targeting of galectin-1 positive tumors. In a therapeutic setting, the antibodies inhibited sprouting angiogenesis in vitro and in vivo, underscoring the key function of galectin-1 in this process.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Victor L Thijssen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Tilman Läppchen
- Oncology Solutions, Philips Research, Eindhoven, the Netherlands.,Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Tse J Wong
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Iris Verel
- Oncology Solutions, Philips Research, Eindhoven, the Netherlands
| | - Maurits Engbersen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Iris A Schulkens
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Raffaella Rossin
- Oncology Solutions, Philips Research, Eindhoven, the Netherlands
| | - Holger Grüll
- Oncology Solutions, Philips Research, Eindhoven, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Patrycja Nowak-Sliwinska
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|