1
|
Di SJ, Wu SY, Liu TJ, Shi YY. Stem cell therapy as a promising strategy in necrotizing enterocolitis. Mol Med 2022; 28:107. [PMID: 36068527 PMCID: PMC9450300 DOI: 10.1186/s10020-022-00536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease that affects newborns, particularly preterm infants, and is associated with high morbidity and mortality. No effective therapeutic strategies to decrease the incidence and severity of NEC have been developed to date. Stem cell therapy has been explored and even applied in various diseases, including gastrointestinal disorders. Animal studies on stem cell therapy have made great progress, and the anti-inflammatory, anti-apoptotic, and intestinal barrier enhancing effects of stem cells may be protective against NEC clinically. In this review, we discuss the therapeutic mechanisms through which stem cells may function in the treatment of NEC.
Collapse
Affiliation(s)
- Si-Jia Di
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Si-Yuan Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tian-Jing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yong-Yan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
2
|
O’Connell JS, Li B, Zito A, Ahmed A, Cadete M, Ganji N, Lau E, Alganabi M, Farhat N, Lee C, Eaton S, Mitchell R, Ray S, De Coppi P, Patel K, Pierro A. Treatment of necrotizing enterocolitis by conditioned medium derived from human amniotic fluid stem cells. PLoS One 2021; 16:e0260522. [PMID: 34855833 PMCID: PMC8638898 DOI: 10.1371/journal.pone.0260522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Necrotizing enterocolitis (NEC) is one of the most distressing gastrointestinal emergencies affecting neonates. Amniotic fluid stem cells (AFSC) improve intestinal injury and survival in experimental NEC but are difficult to administer. In this study, we evaluated whether conditioned medium (CM) derived from human AFSC have protective effects. METHODS Three groups of C57BL/6 mice were studied: (i) breast-fed mice as control; (ii) experimental NEC mice receiving PBS; and (iii) experimental NEC mice receiving CM. NEC was induced between post-natal days P5 through P9 via: (A) gavage feeding of hyperosmolar formula four-time a day; (B) 10 minutes hypoxia prior to feeds; and (C) lipopolysaccharide administration on P6 and P7. Intra-peritoneal injections of either PBS or CM were given on P6 and P7. All mice were sacrificed on P9 and terminal ileum were harvested for analyses. RESULTS CM treatment increased survival and reduced intestinal damage, decreased mucosal inflammation (IL-6; TNF-α), neutrophil infiltration (MPO), and apoptosis (CC3), and also restored angiogenesis (VEGF) in the ileum. Additionally, CM treated mice had increased levels of epithelial proliferation (Ki67) and stem cell activity (Olfm4; Lgr5) compared to NEC+PBS mice, showing restored intestinal regeneration and recovery during NEC induction. CM proteomic analysis of CM content identified peptides that regulated immune and stem cell activity. CONCLUSIONS CM derived from human AFSC administered in experimental NEC exhibited various benefits including reduced intestinal injury and inflammation, increased enterocyte proliferation, and restored intestinal stem cell activity. This study provides the scientific basis for the use of CM derived from AFSC in neonates with NEC.
Collapse
Affiliation(s)
- Joshua S. O’Connell
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrea Zito
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abdalla Ahmed
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marissa Cadete
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Niloofar Ganji
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ethan Lau
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mashriq Alganabi
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nassim Farhat
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carol Lee
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simon Eaton
- Stem Cells & Regenerative Medicine Section, NIHR BRC Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Robert Mitchell
- Micregen Ltd, Thames Valley Science Park, Reading, United Kingdom
| | - Steve Ray
- Micregen Ltd, Thames Valley Science Park, Reading, United Kingdom
| | - Paolo De Coppi
- Stem Cells & Regenerative Medicine Section, NIHR BRC Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ketan Patel
- Micregen Ltd, Thames Valley Science Park, Reading, United Kingdom
| | - Agostino Pierro
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Filip R. An Update on the Role of Extracellular Vesicles in the Pathogenesis of Necrotizing Enterocolitis and Inflammatory Bowel Diseases. Cells 2021; 10:cells10113202. [PMID: 34831425 PMCID: PMC8622309 DOI: 10.3390/cells10113202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
Some of the most fundamental influences of microorganisms inhabiting the human intestinal tract are exerted during infant development and impact the maturation of intestinal mucosa and gut immune system. The impact of bacteria on the host gut immune system is partially mediated via released extracellular vesicles (EVs). The heterogeneity in EV content, size, and bacterial species origin can have an impact on intestinal cells, resulting in inflammation and an immune response, or facilitate pathogen entry into the gut wall. In mammals, maintaining the integrity of the gut barrier might also be an evolutionary function of maternal milk EVs. Recently, the usage of EVs has been explored as a novel therapeutic approach in several pathological conditions, including necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD). In this review, we attempt to summarize the current knowledge of EV biology, followed by a discussion of the role that EVs play in gut maturation and the pathogenesis of NEC and IBD.
Collapse
Affiliation(s)
- Rafał Filip
- Department of Gastroenterology with IBD, Unit of Clinical Hospital 2 in Rzeszow, Lwowska 60, 35-310 Rzeszow, Poland;
- Faculty of Medicine, University of Rzeszow, Aleja Majora Wacława Kopisto 2a, 35-210 Rzeszow, Poland
| |
Collapse
|
4
|
Extracellular Vesicles as a Potential Therapy for Neonatal Conditions: State of the Art and Challenges in Clinical Translation. Pharmaceutics 2019; 11:pharmaceutics11080404. [PMID: 31405234 PMCID: PMC6723449 DOI: 10.3390/pharmaceutics11080404] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Despite advances in intensive care, several neonatal conditions typically due to prematurity affect vital organs and are associated with high mortality and long-term morbidities. Current treatment strategies for these babies are only partially successful or are effective only in selected patients. Regenerative medicine has been shown to be a promising option for these conditions at an experimental level, but still warrants further exploration for the development of optimal treatment. Although stem cell-based therapy has emerged as a treatment option, studies have shown that it is associated with potential risks and hazards, especially in the fragile population of babies. Recently, extracellular vesicles (EVs) have emerged as an attractive therapeutic alternative that holds great regenerative potential and is cell-free. EVs are nanosized particles endogenously produced by cells that mediate intercellular communication through the transfer of their cargo. Currently, EVs are garnering considerable attention as they are the key effectors of stem cell paracrine signaling and can epigenetically regulate target cell genes through the release of RNA species, such as microRNA. Herein, we review the emerging literature on the therapeutic potential of EVs derived from different sources for the treatment of neonatal conditions that affect the brain, retinas, spine, lungs, and intestines and discuss the challenges for the translation of EVs into clinical practice.
Collapse
|