1
|
Wu K, Karapetyan E, Schloss J, Vadgama J, Wu Y. Advancements in small molecule drug design: A structural perspective. Drug Discov Today 2023; 28:103730. [PMID: 37536390 PMCID: PMC10543554 DOI: 10.1016/j.drudis.2023.103730] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
In this review, we outline recent advancements in small molecule drug design from a structural perspective. We compare protein structure prediction methods and explore the role of the ligand binding pocket in structure-based drug design. We examine various structural features used to optimize drug candidates, including functional groups, stereochemistry, and molecular weight. Computational tools such as molecular docking and virtual screening are discussed for predicting and optimizing drug candidate structures. We present examples of drug candidates designed based on their molecular structure and discuss future directions in the field. By effectively integrating structural information with other valuable data sources, we can improve the drug discovery process, leading to the identification of novel therapeutics with improved efficacy, specificity, and safety profiles.
Collapse
Affiliation(s)
- Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Eduard Karapetyan
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - John Schloss
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| | - Jaydutt Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA.
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Aramyan S, McGregor K, Sandeep S, Haczku A. SP-A binding to the SARS-CoV-2 spike protein using hybrid quantum and classical in silico modeling and molecular pruning by Quantum Approximate Optimization Algorithm (QAOA) Based MaxCut with ZDOCK. Front Immunol 2022; 13:945317. [PMID: 36189278 PMCID: PMC9519185 DOI: 10.3389/fimmu.2022.945317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
The pulmonary surfactant protein A (SP-A) is a constitutively expressed immune-protective collagenous lectin (collectin) in the lung. It binds to the cell membrane of immune cells and opsonizes infectious agents such as bacteria, fungi, and viruses through glycoprotein binding. SARS-CoV-2 enters airway epithelial cells by ligating the Angiotensin Converting Enzyme 2 (ACE2) receptor on the cell surface using its Spike glycoprotein (S protein). We hypothesized that SP-A binds to the SARS-CoV-2 S protein and this binding interferes with ACE2 ligation. To study this hypothesis, we used a hybrid quantum and classical in silico modeling technique that utilized protein graph pruning. This graph pruning technique determines the best binding sites between amino acid chains by utilizing the Quantum Approximate Optimization Algorithm (QAOA)-based MaxCut (QAOA-MaxCut) program on a Near Intermediate Scale Quantum (NISQ) device. In this, the angles between every neighboring three atoms were Fourier-transformed into microwave frequencies and sent to a quantum chip that identified the chemically irrelevant atoms to eliminate based on their chemical topology. We confirmed that the remaining residues contained all the potential binding sites in the molecules by the Universal Protein Resource (UniProt) database. QAOA-MaxCut was compared with GROMACS with T-REMD using AMBER, OPLS, and CHARMM force fields to determine the differences in preparing a protein structure docking, as well as with Goemans-Williamson, the best classical algorithm for MaxCut. The relative binding affinity of potential interactions between the pruned protein chain residues of SP-A and SARS-CoV-2 S proteins was assessed by the ZDOCK program. Our data indicate that SP-A could ligate the S protein with a similar affinity to the ACE2-Spike binding. Interestingly, however, the results suggest that the most tightly-bound SP-A binding site is localized to the S2 chain, in the fusion region of the SARS-CoV-2 S protein, that is responsible for cell entry Based on these findings we speculate that SP-A may not directly compete with ACE2 for the binding site on the S protein, but interferes with viral entry to the cell by hindering necessary conformational changes or the fusion process.
Collapse
Affiliation(s)
- Sona Aramyan
- If and Only If (Iff) Technologies, Pleasanton, CA, United States
| | - Kirk McGregor
- If and Only If (Iff) Technologies, Pleasanton, CA, United States
| | - Samarth Sandeep
- If and Only If (Iff) Technologies, Pleasanton, CA, United States
- *Correspondence: Samarth Sandeep, ; Angela Haczku,
| | - Angela Haczku
- University of California (UC) Davis Lung Center Pulmonary, Critical Care and Sleep Division, Department of Medicine, School of Medicine, University of California, Davis, CA, United States
- *Correspondence: Samarth Sandeep, ; Angela Haczku,
| |
Collapse
|
3
|
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. Two decades of Martini: Better beads, broader scope. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras Portugal
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering University of Chicago Chicago Illinois USA
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences University of Calgary Alberta Canada
| | - Paulo C. T. Souza
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| |
Collapse
|
4
|
Roterman I, Sieradzan A, Stapor K, Fabian P, Wesołowski P, Konieczny L. On the need to introduce environmental characteristics in ab initio protein structure prediction using a coarse-grained UNRES force field. J Mol Graph Model 2022; 114:108166. [PMID: 35325843 DOI: 10.1016/j.jmgm.2022.108166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
During the protein folding process in computer simulations involving the use of a United RESidue (UNRES) force field, an additional module was introduced to represent directly the presence of a polar solvent in water form. This module implements the fuzzy oil drop model (FOD) where the 3D Gauss function expresses the presence of a polar environment which directs the polypeptide chain folding process towards the generation of a centric hydrophobic core. Sample test polypeptide chains of 8 proteins with chain lengths ranging from 37 to 75 aa were simulated in silico using the UNRES (U) package with an implicit solvent model and a built-in module expressing the FOD model (UNRES-FOD-UNRES (U + F) interleaved simulation). The protein structure obtained by both *** simulation schemes, i.e., accordingly***U and U + F, for all the analyzed protein models shows the presence of a hydrophobic core including where it is absent in the native structure. The proposed FOD-M model (M-modified) explaining the source of this phenomenon reveals the need to modify the external field expressing the role of a folding environment. The modification takes into account the influence of other than polar factors present in the folding environment.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College Medyczna 7, 30-688, Kraków, Poland.
| | - Adam Sieradzan
- Faculty of Chemistry, Gdansk University, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Katarzyna Stapor
- Faculty of Automatic, Electronics and Computer Science, Department of Applied Informatics, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland.
| | - Piotr Fabian
- Faculty of Automatic, Electronics and Computer Science, Department of Algorithmics and Software, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland.
| | - Patryk Wesołowski
- Faculty of Chemistry, Gdansk University, Wita Stwosza 63, 80-308, Gdańsk, Poland; Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307, Gdańsk, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry - Jagiellonian University - Medical College, Kopernika 7, 31-034, Kraków, Poland.
| |
Collapse
|
5
|
González-Fernández C, Basauri A, Fallanza M, Bringas E, Oostenbrink C, Ortiz I. Fighting Against Bacterial Lipopolysaccharide-Caused Infections through Molecular Dynamics Simulations: A Review. J Chem Inf Model 2021; 61:4839-4851. [PMID: 34559524 PMCID: PMC8549069 DOI: 10.1021/acs.jcim.1c00613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Lipopolysaccharide
(LPS) is the primary component of the outer
leaflet of Gram-negative bacterial outer membranes. LPS elicits an
overwhelming immune response during infection, which can lead to life-threatening
sepsis or septic shock for which no suitable treatment is available
so far. As a result of the worldwide expanding multidrug-resistant
bacteria, the occurrence and frequency of sepsis are expected to increase;
thus, there is an urge to develop novel strategies for treating bacterial
infections. In this regard, gaining an in-depth understanding about
the ability of LPS to both stimulate the host immune system and interact
with several molecules is crucial for fighting against LPS-caused
infections and allowing for the rational design of novel antisepsis
drugs, vaccines and LPS sequestration and detection methods. Molecular
dynamics (MD) simulations, which are understood as being a computational
microscope, have proven to be of significant value to understand LPS-related
phenomena, driving and optimizing experimental research studies. In
this work, a comprehensive review on the methods that can be combined
with MD simulations, recently applied in LPS research, is provided.
We focus especially on both enhanced sampling methods, which enable
the exploration of more complex systems and access to larger time
scales, and free energy calculation approaches. Thereby, apart from
outlining several strategies for surmounting LPS-caused infections,
this work reports the current state-of-the-art of the methods applied
with MD simulations for moving a step forward in the development of
such strategies.
Collapse
Affiliation(s)
- Cristina González-Fernández
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Arantza Basauri
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Marcos Fallanza
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| |
Collapse
|
6
|
Souza FR, Souza LMP, Pimentel AS. Recent Open Issues in Coarse Grained Force Fields. J Chem Inf Model 2020; 60:5881-5884. [PMID: 33231448 DOI: 10.1021/acs.jcim.0c01265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This viewpoint intends to show recent open issues of using coarse grained models in molecular dynamics simulation. It reviews the current knowledge of the comparison between experimental and simulation data of structural and physical chemical properties that depend on the hydrophilic and hydrophobic behavior of the molecule.
Collapse
Affiliation(s)
- Felipe Rodrigues Souza
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22453-900 Brazil
| | - Lucas Miguel Pereira Souza
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22453-900 Brazil
| | - Andre Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22453-900 Brazil
| |
Collapse
|
7
|
Chiba S, Okuno Y, Honma T, Ikeguchi M. Force-field parametrization based on radial and energy distribution functions. J Comput Chem 2019; 40:2577-2585. [PMID: 31343749 PMCID: PMC6790663 DOI: 10.1002/jcc.26035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022]
Abstract
We propose a novel force‐field‐parametrization procedure that fits the parameters of potential functions in a manner that the pair distribution function (DF) of molecules derived from candidate parameters can reproduce the given target DF. Conventionally, approaches to minimize the difference between the candidate and target DFs employ radial DFs (RDF). RDF itself has been reported to be insufficient for uniquely identifying the parameters of a molecule. To overcome the weakness, we introduce energy DF (EDF) as a target DF, which describes the distribution of the pairwise energy of molecules. We found that the EDF responds more sensitively to a small perturbation in the pairwise potential parameters and provides better fitting accuracy compared to that of RDF. These findings provide valuable insights into a wide range of coarse graining methods, which determine parameters using information obtained from a higher‐level calculation than that of the developed force field. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shuntaro Chiba
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yasushi Okuno
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Teruki Honma
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mitsunori Ikeguchi
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
8
|
Heifetz A, Southey M, Morao I, Townsend-Nicholson A, Bodkin MJ. Computational Methods Used in Hit-to-Lead and Lead Optimization Stages of Structure-Based Drug Discovery. Methods Mol Biol 2018; 1705:375-394. [PMID: 29188574 DOI: 10.1007/978-1-4939-7465-8_19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GPCR modeling approaches are widely used in the hit-to-lead (H2L) and lead optimization (LO) stages of drug discovery. The aims of these modeling approaches are to predict the 3D structures of the receptor-ligand complexes, to explore the key interactions between the receptor and the ligand and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this book chapter, we present a brief survey of key computational approaches integrated with hierarchical GPCR modeling protocol (HGMP) used in hit-to-lead (H2L) and in lead optimization (LO) stages of structure-based drug discovery (SBDD). We outline the differences in modeling strategies used in H2L and LO of SBDD and illustrate how these tools have been applied in three drug discovery projects.
Collapse
Affiliation(s)
- Alexander Heifetz
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK. .,Division of Biosciences, Research Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| | - Michelle Southey
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - Inaki Morao
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - Andrea Townsend-Nicholson
- Division of Biosciences, Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Mike J Bodkin
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| |
Collapse
|
9
|
Vaitinadapoule A, Etchebest C. Molecular Modeling of Transporters: From Low Resolution Cryo-Electron Microscopy Map to Conformational Exploration. The Example of TSPO. Methods Mol Biol 2017; 1635:383-416. [PMID: 28755381 DOI: 10.1007/978-1-4939-7151-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This chapter describes a protocol to establish a three-dimensional (3D) model of a protein and to explore its conformational landscape. It combines predictions from up-to-date bioinformatics methods with low-resolution experimental data. It also proposes to examine rapidly the dynamics of the protein using molecular dynamics simulations with a coarse-grained force field. Tools for analyzing these trajectories are suggested as well as those for constructing all-atoms models. Thus, starting from a protein sequence and using free software, the user can get important conformational information, which might improve the knowledge about the protein function.
Collapse
Affiliation(s)
- Aurore Vaitinadapoule
- Unité INSERM UMRS1134, Laboratory of Excellence, Institut National de la Transfusion Sanguine, Université Paris-Diderot, Sorbonne Paris Cité, Université de la Réunion, 6 rue Alexandre Cabanel, 75015, Paris Cedex 15, France
| | - Catherine Etchebest
- Unité INSERM UMRS1134, Laboratory of Excellence, Institut National de la Transfusion Sanguine, Université Paris-Diderot, Sorbonne Paris Cité, Université de la Réunion, 6 rue Alexandre Cabanel, 75015, Paris Cedex 15, France.
| |
Collapse
|
10
|
Lyubartsev AP, Naômé A, Vercauteren DP, Laaksonen A. Systematic hierarchical coarse-graining with the inverse Monte Carlo method. J Chem Phys 2016; 143:243120. [PMID: 26723605 DOI: 10.1063/1.4934095] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We outline our coarse-graining strategy for linking micro- and mesoscales of soft matter and biological systems. The method is based on effective pairwise interaction potentials obtained in detailed ab initio or classical atomistic Molecular Dynamics (MD) simulations, which can be used in simulations at less accurate level after scaling up the size. The effective potentials are obtained by applying the inverse Monte Carlo (IMC) method [A. P. Lyubartsev and A. Laaksonen, Phys. Rev. E 52(4), 3730-3737 (1995)] on a chosen subset of degrees of freedom described in terms of radial distribution functions. An in-house software package MagiC is developed to obtain the effective potentials for arbitrary molecular systems. In this work we compute effective potentials to model DNA-protein interactions (bacterial LiaR regulator bound to a 26 base pairs DNA fragment) at physiological salt concentration at a coarse-grained (CG) level. Normally the IMC CG pair-potentials are used directly as look-up tables but here we have fitted them to five Gaussians and a repulsive wall. Results show stable association between DNA and the model protein as well as similar position fluctuation profile.
Collapse
Affiliation(s)
- Alexander P Lyubartsev
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, S 106 91 Stockholm, Sweden
| | - Aymeric Naômé
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, S 106 91 Stockholm, Sweden
| | | | - Aatto Laaksonen
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, S 106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Eftaiha AF, Wanasundara SN, Paige MF, Bowles RK. Exploring the Impact of Tail Polarity on the Phase Behavior of Single Component and Mixed Lipid Monolayers Using a MARTINI Coarse-Grained Force Field. J Phys Chem B 2016; 120:7641-51. [DOI: 10.1021/acs.jpcb.6b03970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ala’a F. Eftaiha
- Department
of Chemistry, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Surajith N. Wanasundara
- Department
of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Matthew F. Paige
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Richard K. Bowles
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
12
|
Bolia A, Ozkan SB. Adaptive BP-Dock: An Induced Fit Docking Approach for Full Receptor Flexibility. J Chem Inf Model 2016; 56:734-46. [PMID: 26971620 DOI: 10.1021/acs.jcim.5b00587] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present an induced fit docking approach called Adaptive BP-Dock that integrates perturbation response scanning (PRS) with the flexible docking protocol of RosettaLigand in an adaptive manner. We first perturb the binding pocket residues of a receptor and obtain a new conformation based on the residue response fluctuation profile using PRS. Next, we dock a ligand to this new conformation by RosettaLigand, where we repeat these steps for several iterations. We test this approach on several protein test sets including difficult unbound docking cases such as HIV-1 reverse transcriptase and HIV-1 protease. Adaptive BP-Dock results show better correlation with experimental binding affinities compared to other docking protocols. Overall, the results imply that Adaptive BP-Dock can easily capture binding induced conformational changes by simultaneous sampling of protein and ligand conformations. This can provide faster and efficient docking of novel targets for rational drug design.
Collapse
Affiliation(s)
- Ashini Bolia
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - S Banu Ozkan
- Department of Physics, Center for Biological Physics, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
13
|
Zhao X, Yu H, Yang L, Li Q, Huang X. Simulating the antimicrobial mechanism of human β-defensin-3 with coarse-grained molecular dynamics. J Biomol Struct Dyn 2015; 33:2522-9. [PMID: 25562440 DOI: 10.1080/07391102.2014.1002424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Human β-defensin-3 (HβD-3) is an endogenous antimicrobial peptide with potent and broad killing activity against various microorganisms, and thus, it is an attractive candidate for the development of novel peptide antibiotics, but its antimicrobial mechanism remains elusive. To characterize the mechanism, we used multi-microsecond coarse-grained simulations with the MARTINI force field. These simulations show HβD-3 peptides can form oligomers on the surface of bacterial membrane and make anionic lipids (POPG) clustered. Furthermore, two kinds of regions (one is composed of pure POPG lipids, and the other is enriched in POPE lipids) are formed in the membrane; on the border of them, there are some obvious defects, which result in the membrane disruption. By contrast, the simulations also reveal that the contacts between the HβD-3 peptides and mammalian membrane are not stable. These results provide biophysical insights into HβD-3 selectivity and suggest a possible antimicrobial mechanism.
Collapse
Affiliation(s)
- Xi Zhao
- a State Key Laboratory of Theoretical and Computational Chemistry , Institute of Theoretical Chemistry, Jilin University , Changchun 130023 , People's Republic of China
| | - Hui Yu
- b College of Chemistry and Biology , Beihua University , Jilin 132013 , People's Republic of China
| | - Liu Yang
- a State Key Laboratory of Theoretical and Computational Chemistry , Institute of Theoretical Chemistry, Jilin University , Changchun 130023 , People's Republic of China
| | - Qianqian Li
- a State Key Laboratory of Theoretical and Computational Chemistry , Institute of Theoretical Chemistry, Jilin University , Changchun 130023 , People's Republic of China
| | - Xuri Huang
- a State Key Laboratory of Theoretical and Computational Chemistry , Institute of Theoretical Chemistry, Jilin University , Changchun 130023 , People's Republic of China
| |
Collapse
|