1
|
Reagan BC, Dunlap JR, Burch-Smith TM. Focused Ion Beam-Scanning Electron Microscopy for Investigating Plasmodesmal Densities. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2457:109-123. [PMID: 35349135 DOI: 10.1007/978-1-0716-2132-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plasmodesmata (PD) facilitate the exchange of nutrients and signaling molecules between neighboring plant cells, and they are therefore essential for proper growth and development. PD have been studied extensively in efforts to elucidate the ultrastructure of individual PD nanopores and the distribution of PD in a variety of cell walls. These studies often involved the use of serial ultrathin sections and manual quantification of PD by transmission electron microscopy (TEM). In recent years, a variety of techniques that offer more amenable approaches for quantifying PD distribution have been reported. Here, we describe the quantification of PD densities using the serial scanning electron microscopy technique called focused ion beam-scanning electron microscopy (FIB-SEM). For this, resin-embedded samples prepared by standard TEM methods undergo successive rounds of imaging by SEM interspersed with milling of the sample surface by a focused beam of gallium ions to reveal a new surface. In this way, the details of the sample are sequentially revealed and imaged. Over the course of a few hours, repetitive milling and imaging facilitates the automated collection of nanometer-resolution data of several μm of sample depth. FIB-SEM can be targeted to interrogate specific cell walls and cell wall junctions, and the subsequent three-dimensional renderings of the data can be used to visualize the ultrastructural details of the sample. PD densities can then be rapidly quantified by calculating the number of PD per μm2 of cell wall observed in the renderings.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - John R Dunlap
- The Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA. .,Donald Danforth Plant Science Center, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Fernandez JC, Burch-Smith TM. Investigating Plasmodesmata Function in Arabidopsis Thaliana Using a Low-Pressure Bombardment System and GFP Movement Assay. Methods Mol Biol 2022; 2457:273-283. [PMID: 35349147 DOI: 10.1007/978-1-0716-2132-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata are nanopores in the plant cell wall that allow direct cell-to-cell communication. They are key for plant growth, development, and defense. However, studying these pores is challenging due to their small size, with diameters of 30-50 nm and lengths that match cell wall thickness. One particular challenge is measuring how much cell-to-cell trafficking is facilitated by the plasmodesmata in a tissue or between particular cells. Here, we present an approach for studying plasmodesmata-mediated trafficking in the model plant Arabidopsis thaliana by using an easy-to-build and affordable low-pressure particle bombardment apparatus. Using low-pressure particle bombardment at around 60 psi, we are able to transform individual cells in the leaf epidermis and study by confocal fluorescence microscopy the subsequent cell-to-cell trafficking of the diffusible molecule green fluorescent protein (GFP). The technique and equipment could be used by any plant biologist to measure intercellular trafficking through plasmodesmata under varying growth conditions including exposure to different stresses, light conditions, chemical treatments, or in various mutant backgrounds.
Collapse
Affiliation(s)
- Jessica C Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
- Department of Botany, University of Wisconsin, Madison, WI, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.
- Donald Danforth Plant Science Center, Saint Louis, MO, USA.
| |
Collapse
|
3
|
Sankoh AF, Burch-Smith TM. Approaches for investigating plasmodesmata and effective communication. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102143. [PMID: 34826658 DOI: 10.1016/j.pbi.2021.102143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Plasmodesmata (PD) are integral plant cell wall components that provide routes for intercellular communication, signaling, and resource sharing. They are therefore essential for plant growth and survival. Much effort has been put forth to understand how PD are generated and their structure is refined for function and to determine how they regulate intercellular trafficking. This review provides an overview of some of the approaches that have been used to study PD structure and function, highlighting those that may be more widely adopted to address questions of PD cell biology and function. Extending our focus on the importance of communication, we address how effective communication strategies can increase diversity and accessibility in the research laboratory, focusing on challenges faced by our deaf/hard-of-hearing colleagues, and highlight successful approaches to including them in the research laboratory.
Collapse
Affiliation(s)
- Amie F Sankoh
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
4
|
Busche M, Scarpin MR, Hnasko R, Brunkard JO. TOR coordinates nucleotide availability with ribosome biogenesis in plants. THE PLANT CELL 2021; 33:1615-1632. [PMID: 33793860 PMCID: PMC8254494 DOI: 10.1093/plcell/koab043] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 01/29/2021] [Indexed: 05/10/2023]
Abstract
TARGET OF RAPAMYCIN (TOR) is a conserved eukaryotic Ser/Thr protein kinase that coordinates growth and metabolism with nutrient availability. We conducted a medium-throughput functional genetic screen to discover essential genes that promote TOR activity in plants, and identified a critical regulatory enzyme, cytosolic phosphoribosyl pyrophosphate (PRPP) synthetase (PRS4). PRS4 synthesizes cytosolic PRPP, a key upstream metabolite in nucleotide synthesis and salvage pathways. We found that prs4 knockouts are embryo-lethal in Arabidopsis thaliana, and that silencing PRS4 expression in Nicotiana benthamiana causes pleiotropic developmental phenotypes, including dwarfism, aberrant leaf shape, and delayed flowering. Transcriptomic analysis revealed that ribosome biogenesis is among the most strongly repressed processes in prs4 knockdowns. Building on these results, we discovered that TOR activity is inhibited by chemical or genetic disruption of nucleotide biosynthesis, but that this effect can be reversed by supplying plants with nucleobases. Finally, we show that TOR transcriptionally promotes nucleotide biosynthesis to support the demands of ribosomal RNA synthesis. We propose that TOR coordinates ribosome biogenesis with nucleotide availability in plants to maintain metabolic homeostasis and support growth.
Collapse
Affiliation(s)
- Michael Busche
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| | - M Regina Scarpin
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| | - Robert Hnasko
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Pacific West Area, USDA Agricultural Research Service, Albany, CA 94710,USA
| | - Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| |
Collapse
|
5
|
Horner W, Brunkard JO. Cytokinins Stimulate Plasmodesmatal Transport in Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:674128. [PMID: 34135930 PMCID: PMC8201399 DOI: 10.3389/fpls.2021.674128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Plant cells are connected by plasmodesmata (PD), nanoscopic channels in cell walls that allow diverse cytosolic molecules to move between neighboring cells. PD transport is tightly coordinated with physiology and development, although the range of signaling pathways that influence PD transport has not been comprehensively defined. Several plant hormones, including salicylic acid (SA) and auxin, are known to regulate PD transport, but the effects of other hormones have not been established. In this study, we provide evidence that cytokinins promote PD transport in leaves. Using a green fluorescent protein (GFP) movement assay in the epidermis of Nicotiana benthamiana, we have shown that PD transport significantly increases when leaves are supplied with exogenous cytokinins at physiologically relevant concentrations or when a positive regulator of cytokinin responses, ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 5 (AHP5), is overexpressed. We then demonstrated that silencing cytokinin receptors, ARABIDOPSIS HISTIDINE KINASE 3 (AHK3) or AHK4 or overexpressing a negative regulator of cytokinin signaling, AAHP6, significantly decreases PD transport. These results are supported by transcriptomic analysis of mutants with increased PD transport (ise1-4), which show signs of enhanced cytokinin signaling. We concluded that cytokinins contribute to dynamic changes in PD transport in plants, which will have implications in several aspects of plant biology, including meristem patterning and development, regulation of the sink-to-source transition, and phytohormone crosstalk.
Collapse
Affiliation(s)
- Wilson Horner
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, United States
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI, United States
| | - Jacob O. Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, United States
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
6
|
Li Z, Variz H, Chen Y, Liu SL, Aung K. Plasmodesmata-Dependent Intercellular Movement of Bacterial Effectors. FRONTIERS IN PLANT SCIENCE 2021. [PMID: 33959138 DOI: 10.1101/2020.12.10.420240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Pathogenic microorganisms deliver protein effectors into host cells to suppress host immune responses. Recent findings reveal that phytopathogens manipulate the function of plant cell-to-cell communication channels known as plasmodesmata (PD) to promote diseases. Several bacterial and filamentous pathogen effectors have been shown to regulate PD in their host cells. A few effectors of filamentous pathogens have been reported to move from the infected cells to neighboring plant cells through PD; however, it is unclear whether bacterial effectors can traffic through PD in plants. In this study, we determined the intercellular movement of Pseudomonas syringae pv. tomato (Pst) DC3000 effectors between adjoining plant cells in Nicotiana benthamiana. We observed that at least 16 Pst DC3000 effectors have the capacity to move from transformed cells to the surrounding plant cells. The movement of the effectors is largely dependent on their molecular weights. The expression of PD regulators, Arabidopsis PD-located protein PDLP5 and PDLP7, leads to PD closure and inhibits the PD-dependent movement of a bacterial effector in N. benthamiana. Similarly, a 22-amino acid peptide of bacterial flagellin (flg22) treatment induces PD closure and suppresses the movement of a bacterial effector in N. benthamiana. Among the mobile effectors, HopAF1 and HopA1 are localized to the plasma membrane (PM) in plant cells. Interestingly, the PM association of HopAF1 does not negatively affect the PD-dependent movement. Together, our findings demonstrate that bacterial effectors are able to move intercellularly through PD in plants.
Collapse
Affiliation(s)
- Zhongpeng Li
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Haris Variz
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Yani Chen
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Su-Ling Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kyaw Aung
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Li Z, Variz H, Chen Y, Liu SL, Aung K. Plasmodesmata-Dependent Intercellular Movement of Bacterial Effectors. FRONTIERS IN PLANT SCIENCE 2021; 12:640277. [PMID: 33959138 PMCID: PMC8095247 DOI: 10.3389/fpls.2021.640277] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 05/03/2023]
Abstract
Pathogenic microorganisms deliver protein effectors into host cells to suppress host immune responses. Recent findings reveal that phytopathogens manipulate the function of plant cell-to-cell communication channels known as plasmodesmata (PD) to promote diseases. Several bacterial and filamentous pathogen effectors have been shown to regulate PD in their host cells. A few effectors of filamentous pathogens have been reported to move from the infected cells to neighboring plant cells through PD; however, it is unclear whether bacterial effectors can traffic through PD in plants. In this study, we determined the intercellular movement of Pseudomonas syringae pv. tomato (Pst) DC3000 effectors between adjoining plant cells in Nicotiana benthamiana. We observed that at least 16 Pst DC3000 effectors have the capacity to move from transformed cells to the surrounding plant cells. The movement of the effectors is largely dependent on their molecular weights. The expression of PD regulators, Arabidopsis PD-located protein PDLP5 and PDLP7, leads to PD closure and inhibits the PD-dependent movement of a bacterial effector in N. benthamiana. Similarly, a 22-amino acid peptide of bacterial flagellin (flg22) treatment induces PD closure and suppresses the movement of a bacterial effector in N. benthamiana. Among the mobile effectors, HopAF1 and HopA1 are localized to the plasma membrane (PM) in plant cells. Interestingly, the PM association of HopAF1 does not negatively affect the PD-dependent movement. Together, our findings demonstrate that bacterial effectors are able to move intercellularly through PD in plants.
Collapse
|
8
|
Ganusova EE, Reagan BC, Fernandez JC, Azim MF, Sankoh AF, Freeman KM, McCray TN, Patterson K, Kim C, Burch-Smith TM. Chloroplast-to-nucleus retrograde signalling controls intercellular trafficking via plasmodesmata formation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190408. [PMID: 32362251 DOI: 10.1098/rstb.2019.0408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The signalling pathways that regulate intercellular trafficking via plasmodesmata (PD) remain largely unknown. Analyses of mutants with defects in intercellular trafficking led to the hypothesis that chloroplasts are important for controlling PD, probably by retrograde signalling to the nucleus to regulate expression of genes that influence PD formation and function, an idea encapsulated in the organelle-nucleus-PD signalling (ONPS) hypothesis. ONPS is supported by findings that point to chloroplast redox state as also modulating PD. Here, we have attempted to further elucidate details of ONPS. Through reverse genetics, expression of select nucleus-encoded genes with known or predicted roles in chloroplast gene expression was knocked down, and the effects on intercellular trafficking were then assessed. Silencing most genes resulted in chlorosis, and the expression of several photosynthesis and tetrapyrrole biosynthesis associated nuclear genes was repressed in all silenced plants. PD-mediated intercellular trafficking was changed in the silenced plants, consistent with predictions of the ONPS hypothesis. One striking observation, best exemplified by silencing the PNPase homologues, was that the degree of chlorosis of silenced leaves was not correlated with the capacity for intercellular trafficking. Finally, we measured the distribution of PD in silenced leaves and found that intercellular trafficking was positively correlated with the numbers of PD. Together, these results not only provide further support for ONPS but also point to a genetic mechanism for PD formation, clarifying a longstanding question about PD and intercellular trafficking. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Elena E Ganusova
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brandon C Reagan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jessica C Fernandez
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Mohammad F Azim
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amie F Sankoh
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Tyra N McCray
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kelsey Patterson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Chinkee Kim
- Departments of Science and Mathematics, RIT/National Technical Institute for the Deaf (NTID), Rochester, NY 14623, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
9
|
Brunkard JO, Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, Goodman HM, Zambryski P. TOR dynamically regulates plant cell-cell transport. Proc Natl Acad Sci U S A 2020; 117:5049-5058. [PMID: 32051250 PMCID: PMC7060719 DOI: 10.1073/pnas.1919196117] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The coordinated redistribution of sugars from mature "source" leaves to developing "sink" leaves requires tight regulation of sugar transport between cells via plasmodesmata (PD). Although fundamental to plant physiology, the mechanisms that control PD transport and thereby support development of new leaves have remained elusive. From a forward genetic screen for altered PD transport, we discovered that the conserved eukaryotic glucose-TOR (TARGET OF RAPAMYCIN) metabolic signaling network restricts PD transport in leaves. Genetic approaches and chemical or physiological treatments to either promote or disrupt TOR activity demonstrate that glucose-activated TOR decreases PD transport in leaves. We further found that TOR is significantly more active in mature leaves photosynthesizing excess sugars than in young, growing leaves, and that this increase in TOR activity correlates with decreased rates of PD transport. We conclude that leaf cells regulate PD trafficking in response to changing carbohydrate availability monitored by the TOR pathway.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720;
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
- Innovative Genomics Institute, Berkeley, CA 94720
| | - Min Xu
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Department of Biology, Northwest University, 710069 Xi'an, China
| | - M Regina Scarpin
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
| | - Snigdha Chatterjee
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
- Innovative Genomics Institute, Berkeley, CA 94720
| | - Elena A Shemyakina
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
| | - Howard M Goodman
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
| | - Patricia Zambryski
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720;
| |
Collapse
|
10
|
Kraner ME, Müller C, Sonnewald U. Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:696-709. [PMID: 28865150 DOI: 10.1111/tpj.13702] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 05/23/2023]
Abstract
In plants, intercellular communication and exchange are highly dependent on cell wall bridging structures between adhering cells, so-called plasmodesmata (PD). In our previous genetic screen for PD-deficient Arabidopsis mutants, we described choline transporter-like 1 (CHER1) being important for PD genesis and maturation. Leaves of cher1 mutant plants have up to 10 times less PD, which do not develop to complex structures. Here we utilize the T-DNA insertion mutant cher1-4 and report a deep comparative proteomic workflow for the identification of cell-wall-embedded PD-associated proteins. Analyzing triplicates of cell-wall-enriched fractions in depth by fractionation and quantitative high-resolution mass spectrometry, we compared > 5000 proteins obtained from fully developed leaves. Comparative data analysis and subsequent filtering generated a list of 61 proteins being significantly more abundant in Col-0. This list was enriched for previously described PD-associated proteins. To validate PD association of so far uncharacterized proteins, subcellular localization analyses were carried out by confocal laser-scanning microscopy. This study confirmed the association of PD for three out of four selected candidates, indicating that the comparative approach indeed allowed identification of so far undescribed PD-associated proteins. Performing comparative cell wall proteomics of Nicotiana benthamiana tissue, we observed an increase in abundance of these three selected candidates during sink to source transition. Taken together, our comparative proteomic approach revealed a valuable data set of potential PD-associated proteins, which can be used as a resource to unravel the molecular composition of complex PD and to investigate their function in cell-to-cell communication.
Collapse
Affiliation(s)
- Max E Kraner
- Division of Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr 5, D-91058, Erlangen, Germany
| | - Carmen Müller
- Division of Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr 5, D-91058, Erlangen, Germany
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr 5, D-91058, Erlangen, Germany
| |
Collapse
|
11
|
Ni W, Xu SL, González-Grandío E, Chalkley RJ, Huhmer AFR, Burlingame AL, Wang ZY, Quail PH. PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. Nat Commun 2017; 8:15236. [PMID: 28492231 PMCID: PMC5437280 DOI: 10.1038/ncomms15236] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/10/2017] [Indexed: 12/21/2022] Open
Abstract
Upon light-induced nuclear translocation, phytochrome (phy) sensory photoreceptors interact with, and induce rapid phosphorylation and consequent ubiquitin-mediated degradation of, transcription factors, called PIFs, thereby regulating target gene expression and plant development. Nevertheless, the biochemical mechanism of phy-induced PIF phosphorylation has remained ill-defined. Here we identify a family of nuclear protein kinases, designated Photoregulatory Protein Kinases (PPK1-4; formerly called MUT9-Like Kinases (MLKs)), that interact with PIF3 and phyB in a light-induced manner in vivo. Genetic analyses demonstrate that the PPKs are collectively necessary for the normal light-induced phosphorylation and degradation of PIF3. PPK1 directly phosphorylates PIF3 in vitro, with a phosphosite pattern that strongly mimics the light-induced pattern in vivo. These data establish that the PPKs are directly involved in catalysing the photoactivated-phy-induced phosphorylation of PIF3 in vivo, and thereby are critical components of a transcriptionally centred signalling hub that pleiotropically regulates plant growth and development in response to multiple signalling pathways.
Collapse
Affiliation(s)
- Weimin Ni
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- U.S. Department of Agriculture/Agriculture Research Service, Plant Gene Expression Center, Albany, California 94710, USA
| | - Shou-Ling Xu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Thermo Fisher Scientific, San Jose, California 95134, USA
| | - Eduardo González-Grandío
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- U.S. Department of Agriculture/Agriculture Research Service, Plant Gene Expression Center, Albany, California 94710, USA
| | - Robert J. Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | | | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Peter H. Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- U.S. Department of Agriculture/Agriculture Research Service, Plant Gene Expression Center, Albany, California 94710, USA
| |
Collapse
|
12
|
Brunkard JO, Zambryski PC. Plasmodesmata enable multicellularity: new insights into their evolution, biogenesis, and functions in development and immunity. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:76-83. [PMID: 27889635 DOI: 10.1016/j.pbi.2016.11.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 05/19/2023]
Abstract
Plant cells are connected by plasmodesmata (PD), cytosolic bridges that allow molecules to freely move across the cell wall. Recently resolved relationships among land plants and their algal relatives reveal that land plants evolved PD independently from algae. Proteomic and genetic screens illuminate new dimensions of the structural and regulatory pathways that control PD biogenesis. Biochemical studies demonstrate that immunological signals induce systemic defenses by moving from diseased cells through PD; subsequently, PD transport is restricted to quarantine diseased cells. Here, we review our expanding knowledge of the roles of PD in plant development, physiology, and immunity.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Plant Gene Expression Center, USDA Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA
| | - Patricia C Zambryski
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Brunkard JO, Runkel AM, Zambryski P. Visualizing Stromule Frequency with Fluorescence Microscopy. J Vis Exp 2016:54692. [PMID: 27911400 PMCID: PMC5226277 DOI: 10.3791/54692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Stromules, or "stroma-filled tubules", are narrow, tubular extensions from the surface of the chloroplast that are universally observed in plant cells but whose functions remain mysterious. Alongside growing attention on the role of chloroplasts in coordinating plant responses to stress, interest in stromules and their relationship to chloroplast signaling dynamics has increased in recent years, aided by advances in fluorescence microscopy and protein fluorophores that allow for rapid, accurate visualization of stromule dynamics. Here, we provide detailed protocols to assay stromule frequency in the epidermal chloroplasts of Nicotiana benthamiana, an excellent model system for investigating chloroplast stromule biology. We also provide methods for visualizing chloroplast stromules in vitro by extracting chloroplasts from leaves. Finally, we outline sampling strategies and statistical approaches to analyze differences in stromule frequencies in response to stimuli, such as environmental stress, chemical treatments, or gene silencing. Researchers can use these protocols as a starting point to develop new methods for innovative experiments to explore how and why chloroplasts make stromules.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Plant Gene Expression Center, Agricultural Research Service, USDA
| | - Anne M Runkel
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Patricia Zambryski
- Department of Plant and Microbial Biology, University of California, Berkeley;
| |
Collapse
|
14
|
Brunkard JO, Runkel AM, Zambryski PC. Chloroplasts extend stromules independently and in response to internal redox signals. Proc Natl Acad Sci U S A 2015; 112:10044-9. [PMID: 26150490 PMCID: PMC4538653 DOI: 10.1073/pnas.1511570112] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A fundamental mystery of plant cell biology is the occurrence of "stromules," stroma-filled tubular extensions from plastids (such as chloroplasts) that are universally observed in plants but whose functions are, in effect, completely unknown. One prevalent hypothesis is that stromules exchange signals or metabolites between plastids and other subcellular compartments, and that stromules are induced during stress. Until now, no signaling mechanisms originating within the plastid have been identified that regulate stromule activity, a critical missing link in this hypothesis. Using confocal and superresolution 3D microscopy, we have shown that stromules form in response to light-sensitive redox signals within the chloroplast. Stromule frequency increased during the day or after treatment with chemicals that produce reactive oxygen species specifically in the chloroplast. Silencing expression of the chloroplast NADPH-dependent thioredoxin reductase, a central hub in chloroplast redox signaling pathways, increased chloroplast stromule frequency, whereas silencing expression of nuclear genes related to plastid genome expression and tetrapyrrole biosynthesis had no impact on stromules. Leucoplasts, which are not photosynthetic, also made more stromules in the daytime. Leucoplasts did not respond to the same redox signaling pathway but instead increased stromule formation when exposed to sucrose, a major product of photosynthesis, although sucrose has no impact on chloroplast stromule frequency. Thus, different types of plastids make stromules in response to distinct signals. Finally, isolated chloroplasts could make stromules independently after extraction from the cytoplasm, suggesting that chloroplast-associated factors are sufficient to generate stromules. These discoveries demonstrate that chloroplasts are remarkably autonomous organelles that alter their stromule frequency in reaction to internal signal transduction pathways.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Anne M Runkel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Patricia C Zambryski
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|