1
|
Yao Y, Yang A, Li G, Wu H, Deng S, Yang H, Ma W, Lv D, Fu Y, Ji P, Tan X, Zhao W, Lian Z, Zhang L, Liu G. Melatonin promotes the development of sheep transgenic cloned embryos by protecting donor and recipient cells. Cell Cycle 2022; 21:1360-1375. [PMID: 35311450 PMCID: PMC9345622 DOI: 10.1080/15384101.2022.2051122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The yield efficiency of transgenic animal generation is relatively low[1]. To improve its efficiency has become a priority task for researchers[2]. Melatonin (N-acetyl-5-methoxytryptamine, MT) is a potent-free radical scavenger and antioxidant to protect mitochondria, lipids, protein and DNA from oxidative stress[3]. In this study, we observed that improving the quality of both donor and recipient cells by giving physiological concentration (10-7 M) of MT significantly increase the sheep transgenic embryo development in the in vitro condition. MT promotes the donor cell viability, proliferation, efficiency of monoclonal formation and the electrotransferring efficiency of fetal fibroblast cells (FFCs). The mechanistic exploration indicates that MT has the capacity for the synchronization of cell division cycle, reduction of cellular oxidative stress, apoptosis, and the increase of mitochondrial number and function. All of these render MT's ability to increase the efficiency of animal transgenic processes such as somatic cell nuclear transfer (SCNT) and electroporation. The outcomes are the increased cleavage rate and blastocyst rate of the transgenic sheep embryos after MT treatment. These beneficial effects of MT on transgenic embryo development are worth to be tested in the in vivo condition in the future.
Collapse
Affiliation(s)
- Yujun Yao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ailing Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guangdong Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- Cas Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hai Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenkui Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongying Lv
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- CONTACT Zhengxing Lian National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Lu Zhang National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Guoshi Liu National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Ruebel ML, Latham KE. Listening to mother: Long-term maternal effects in mammalian development. Mol Reprod Dev 2020; 87:399-408. [PMID: 32202026 DOI: 10.1002/mrd.23336] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/08/2020] [Indexed: 12/17/2022]
Abstract
The oocyte is a complex cell that executes many crucial and unique functions at the start of each life. These functions are fulfilled by a unique collection of macromolecules and other factors, all of which collectively support meiosis, oocyte activation, and embryo development. This review focuses on the effects of oocyte components on developmental processes that occur after the initial stages of embryogenesis. These include long-term effects on genome function, metabolism, lineage allocation, postnatal progeny health, and even subsequent generations. Factors that regulate chromatin structure, genome programming, and mitochondrial function are elements that contribute to these oocyte functions.
Collapse
Affiliation(s)
- Meghan L Ruebel
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
3
|
Chang HY, Xie RX, Zhang L, Fu LZ, Zhang CT, Chen HH, Wang ZQ, Zhang Y, Quan FS. Overexpression of miR-101-2 in donor cells improves the early development of Holstein cow somatic cell nuclear transfer embryos. J Dairy Sci 2019; 102:4662-4673. [PMID: 30879805 DOI: 10.3168/jds.2018-15072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Accumulating studies have suggested that microRNA play a part in regulating multiple cellular processes, such as cell proliferation, apoptosis, the cell cycle, and embryo development. This study explored the effects of miR-101-2 on donor cell physiological status and the development of Holstein cow somatic cell nuclear transfer (SCNT) embryos in vitro. Holstein cow bovine fetal fibroblasts (BFF) overexpressing miR-101-2 were used as donor cells to perform SCNT; then, cleavage rate, blastocyst rate, inner cell mass-to-trophectoderm ratio, and the expression of some development- and apoptosis-related genes in different groups were analyzed. The miR-101-2 suppressed the expression of inhibitor of growth protein 3 (ING3) at mRNA and protein levels, expedited cell proliferation, and decreased apoptosis in BFF, suggesting that ING3, a target gene of miR-101-2, is a potential player in this process. Moreover, by utilizing donor cells overexpressing miR-101-2, the development of bovine SCNT embryos in vitro was significantly enhanced; the apoptotic rate in SCNT blastocysts was reduced, and the inner cell mass-to-trophectoderm ratio and SOX2, POU5F1, and BCL2L1 expression significantly increased, whereas BAX and ING3 expression decreased. Collectively, these findings suggest that miR-101-2 promotes BFF proliferation and vitality, reduces their apoptosis, and improves the early development of SCNT embryos.
Collapse
Affiliation(s)
- H Y Chang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - R X Xie
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - L Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - L Z Fu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - C T Zhang
- Animal Husbandry and Veterinary Station of Xining, Xining 810003, Qinghai, China
| | - H H Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Z Q Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Y Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - F S Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Gómez NA, Ramírez MM, Ruiz-Cortés ZT. PRIMARY FIBROBLAST CELL CYCLE SYNCHRONIZATION AND EFFECTS ON HANDMADE CLONED (HMC) BOVINE EMBRYOS. CIÊNCIA ANIMAL BRASILEIRA 2018. [DOI: 10.1590/1809-6891v19e-48555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Spatial and temporal synchrony and compatibility between the receptor oocyte and the donor cell nucleus are necessary for the process of embryo cloning to allow nuclear reprogramming and early embryonic development. The objective of the present study was to evaluate three cell cycle synchronization methods on a primary bovine fibroblast culture for 24, 48, or 72 h. These fibroblasts were used as nuclear donors to evaluate their in vitro developmental potential and the quality of the embryos produced through handmade cloning (HMC). No differences were found between the methods used for fibroblast synchronization in G0/G1 (p > 0.05). Production of clones from fibroblasts in four groups- no treatment at 0 h and using serum restriction SR, high culture confluence HCC, and SR+HCC at 24 h- resulted in high cleavage rates that were not different. Embryo production rates were 37.9%, 29.5%, and 30.9% in the 0h, SR24h, and SR+HHC24h groups, respectively, and 19.3% in the HCC group, which was significantly different from the other three (p < 0.05). There were no differences in the quality parameter among the clones produced with fibroblasts subjected to the different synchronization. Finally, when overall clone production was compared versus parthenotes and IVF embryos, the only difference was between clones and parthenogenetic embryos with zona pellucida (30.2% vs 38.6%). The number of blastomeres from the blastocytes produced through IVF was significantly greater than those from embryos activated parthenogenetically and from clones (117, 80, 75.9, and 67.1, respectively). The evaluation of three synchronization methods at different time points did not demonstrate an increase in the percentage of fibroblasts in the G0/G1 phases of the cell cycle; however, good quality and high cloning rates were obtained, suggesting that it is not always necessary to subject the cells to any synchronization treatments, as they would yield equally good cloning results.
Collapse
|
5
|
He XY, Ma LB, He XN, Si WT, Zheng YM. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model. J Vet Sci 2017; 17:145-52. [PMID: 26243608 PMCID: PMC4921662 DOI: 10.4142/jvs.2016.17.2.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/17/2015] [Accepted: 07/31/2015] [Indexed: 12/18/2022] Open
Abstract
Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos.
Collapse
Affiliation(s)
- Xiao-Ying He
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Li-Bing Ma
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Xiao-Ning He
- Research and Development Center for Tissue Engineering, Xi'an 710048, China
| | - Wan-Tong Si
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Yue-Mao Zheng
- College of Veterinary Medicine, Northwest A&F University, Shenyang 712100, China.,Key Laboratory of Animal Reproductive Endocrinology & Embryo Engineering, Ministry of Agriculture, Shenyang 712100, China
| |
Collapse
|
6
|
Huan Y, Hu K, Xie B, Shi Y, Wang F, Zhou Y, Liu S, Huang B, Zhu J, Liu Z, He Y, Li J, Kong Q, Liu Z. Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning. PLoS One 2015; 10:e0142549. [PMID: 26565717 PMCID: PMC4643933 DOI: 10.1371/journal.pone.0142549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/25/2015] [Indexed: 11/18/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is an assisted reproductive technique that can produce multiple copies of excellent livestock. However, low cloning efficiency limits the application of SCNT. In this study, we systematically investigated the major influencing factors related to the overall cloning efficiency in pigs. Here, 13620 cloned embryos derived from excellent pigs were transferred into 79 surrogate gilts, and 119 live cloned piglets were eventually generated. During cloning, group of cloned embryos derived from excellent Landrace or Large white pigs presented no significant differences of cleavage and blastocyst rates, blastocyst cell numbers, surrogate pregnancy and delivery rates, average numbers of piglets born and alive and cloning efficiencies, and group of 101-150, 151-200 or 201-250 cloned embryos transferred per surrogate also displayed a similar developmental efficiency. When estrus stage of surrogate gilts was compared, group of embryo transfer on Day 2 of estrus showed significantly higher pregnancy rate, delivery rate, average number of piglets born, average alive piglet number or cloning efficiency than group on Day 1, Day 3, Day 4 or Day 5, respectively (P<0.05). And, in comparison with the preovulation and postovulation groups, group of surrogate gilts during periovulation displayed a significantly higher overall cloning efficiency (P<0.05). Further investigation of surrogate estrus stage and ovulation status displayed that ovulation status was the real factor underlying estrus stage to determine the overall cloning efficiency. And more, follicle puncture for preovulation, not transfer position shallowed for preovulation or deepened for postovulation, significantly improved the average number of piglets alive and cloning efficiency (P<0.05). In conclusion, our results demonstrated that ovulation status of surrogate gilts was the fundamental factor determining the overall cloning efficiency of excellent pigs, and follicle puncture, not transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency.
Collapse
Affiliation(s)
- Yanjun Huan
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Kui Hu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Bingteng Xie
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Yongqian Shi
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Feng Wang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Yang Zhou
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Shichao Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Bo Huang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Jiang Zhu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhongfeng Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Yilong He
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Jingyu Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Qingran Kong
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- * E-mail:
| |
Collapse
|
7
|
Huan YJ, Wu ZF, Zhang JG, Zhu J, Xie BT, Wang JY, Li JY, Xue BH, Kong QR, Liu ZH. Alteration of the DNA methylation status of donor cells impairs the developmental competence of porcine cloned embryos. J Reprod Dev 2015; 62:71-7. [PMID: 26537205 PMCID: PMC4768780 DOI: 10.1262/jrd.2015-048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear reprogramming induced by somatic cell nuclear transfer is an inefficient process, and donor cell DNA
methylation status is thought to be a major factor affecting cloning efficiency. Here, the role of donor cell
DNA methylation status regulated by 5-aza-2'-deoxycytidine (5-aza-dC) or
5-methyl-2'-deoxycytidine-5'-triphosphate (5-methyl-dCTP) in the early development of porcine cloned embryos
was investigated. Our results showed that 5-aza-dC or 5-methyl-dCTP significantly reduced or increased the
global methylation levels and altered the methylation and expression levels of key genes in donor cells.
However, the development of cloned embryos derived from these cells was reduced. Furthermore, disrupted
pseudo-pronucleus formation and transcripts of early embryo development-related genes were observed in cloned
embryos derived from these cells. In conclusion, our results demonstrated that alteration of the DNA
methylation status of donor cells by 5-aza-dC or 5-methyl-dCTP disrupted nuclear reprogramming and impaired
the developmental competence of porcine cloned embryos.
Collapse
Affiliation(s)
- Yan Jun Huan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Huan Y, Wu Z, Zhang J, Zhu J, Liu Z, Song X. Epigenetic Modification Agents Improve Gene-Specific Methylation Reprogramming in Porcine Cloned Embryos. PLoS One 2015; 10:e0129803. [PMID: 26068219 PMCID: PMC4465902 DOI: 10.1371/journal.pone.0129803] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022] Open
Abstract
Incomplete DNA methylation reprogramming in cloned embryos leads to poor cloning efficiency. Epigenetic modification agents can improve genomic methylation reprogramming and the development of cloned embryos, however, the effect of epigenetic modification agents on gene-specific methylation reprogramming remains poorly studied. Here, we investigated DNA methylation reprogramming of pluripotency (Oct4) and tissue specific (Thy1) genes during early embryo development in pigs. In this study, we found that compared with in vitro fertilized counterparts, cloned embryos displayed the disrupted patterns of Oct4 demethylation and Thy1 remethylation. When 5-aza-2'-deoxycytidine (5-aza-dC) or trichostatin A (TSA) enhanced the development of cloned embryos, the transcripts of DNA methyltransferases (Dnmt1 and Dnmt3a), histone acetyltransferase 1 (Hat1) and histone deacetylase 1 (Hdac1) and the methylation and expression patterns of Oct4 and Thy1 became similar to those detected in in vitro fertilized counterparts. Further studies showed that Dnmt1 knockdown in cloned embryos enhanced the methylation reprogramming of Oct4 and Thy1 and promoted the activation of Oct4 and the silence of Thy1. In conclusion, our results demonstrated that cloned embryos displayed incomplete gene-specific methylation reprogramming and disrupted expression patterns of pluripotency and tissue specific genes, and epigenetic modification agents improved gene-specific methylation reprogramming and expression pattern by regulating epigenetic modification related genes. This work would have important implications in improving cloning efficiency.
Collapse
Affiliation(s)
- Yanjun Huan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhanfeng Wu
- Shouguang City Hospital of Chinese Medicine, Weifang, Shandong Province, China
| | - Jiguang Zhang
- Shouguang City Hospital of Chinese Medicine, Weifang, Shandong Province, China
| | - Jiang Zhu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- * E-mail: (LZH); (SXX)
| | - Xuexiong Song
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
- * E-mail: (LZH); (SXX)
| |
Collapse
|