1
|
Zhu J, Liu L, Lin R, Guo X, Yin J, Xie H, Lu Y, Zhang Z, Zhang H, Yao Z, Zhang H, Wang X, Zeng C, Cai D. RPL35 downregulated by mechanical overloading promotes chondrocyte senescence and osteoarthritis development via Hedgehog-Gli1 signaling. J Orthop Translat 2024; 45:226-235. [PMID: 38596341 PMCID: PMC11001632 DOI: 10.1016/j.jot.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/01/2023] [Accepted: 01/13/2024] [Indexed: 04/11/2024] Open
Abstract
Objectives To investigate the potential role of Ribosomal protein L35 (RPL35) in regulating chondrocyte catabolic metabolism and to examine whether osteoarthritis (OA) progression can be delayed by overexpressing RPL35 in a mouse compression loading model. Methods RNA sequencing analysis was performed on chondrocytes treated with or without 20 % elongation strain loading for 24 h. Experimental OA in mice was induced by destabilization of the medial meniscus and compression loading. Mice were randomly assigned to a sham group, an intra-articular adenovirus-mediated overexpression of the negative group, and an intra-articular adenovirus-mediated overexpression of the RPL35 operated group. The Osteoarthritis Research Society International score was used to evaluate cartilage degeneration. Immunostaining and western blot analyses were conducted to detect relative protein levels. Primary mouse chondrocytes were treated with 20 % elongation strain loading for 24 h to investigate the role of RPL35 in modulating chondrocyte catabolic metabolism and regulating cellular senescence in chondrocytes. Results The protein expression of RPL35 in mouse chondrocytes was significantly reduced when excessive mechanical loading was applied, while elevated protein levels of RPL35 protected articular chondrocytes from degeneration. In addition, the RPL35 knockdown alone induced chondrocyte senescence, decreased the expression of anabolic markers, and increased the expression of catabolic markers in vitro in part through the hedgehog (Hh) pathway. Conclusions These findings demonstrated a functional pathway important for OA development and identified intra-articular injection of RPL35 as a potential therapy for OA prevention and treatment. The translational potential of this article It is necessary to develop new targeted drugs for OA due to the limitations of conventional pharmacotherapy. Our study explores and demonstrates the protective effect of RPL35 against excessive mechanical stress in OA models in vivo and in vitro in animals. These findings might provide novel insights into OA pathogenesis and show its translational potential for OA therapy.
Collapse
Affiliation(s)
- Jinjian Zhu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Liangliang Liu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Rengui Lin
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xiongtian Guo
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Jianbin Yin
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haoyu Xie
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yuheng Lu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zhicheng Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hongbo Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zihao Yao
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xiangjiang Wang
- Orthopedics department, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Chun Zeng
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Daozhang Cai
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| |
Collapse
|
2
|
Wang J, Liang S, Ma T, Chen S, Hu Y, Wang L. Tranexamic Acid Causes Chondral Injury Through Chondrocytes Apoptosis Induced by Activating Endoplasmic Reticulum Stress. Arthroscopy 2023; 39:2529-2546.e1. [PMID: 37683831 DOI: 10.1016/j.arthro.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
PURPOSE To investigate whether tranexamic acid (TXA) is cytotoxic in chondrocyte and cartilage tissues, as well as explore the mechanisms behind the possible toxicity in detail. METHODS We detected the cell viability of chondrocytes in vitro and the change of morphology and specific in vivo contents of cartilage after TXA treatment. Furthermore, we detected apoptosis in cartilage. We used apoptosis-specific staining, reactive oxygen species detection, mitochondrial membrane potential detection, flow cytometry, and western blot for apoptosis detection. Finally, we detected the activation of endoplasmic reticulum stress (ERS) in TXA-treated chondrocytes to clarify the mechanism behind chondrocyte apoptosis. RESULTS TXA presented an increasing toxic effect with increasing concentrations, especially in the 100 mg/mL group. In addition, we found that 50 mg/mL and 100 mg/mL TXA significantly increased apoptosis in cartilage and subchondral bone. TXA could induce chondrocyte apoptosis in cell and protein levels with reactive oxygen species generation and mitochondrial membrane depolarization. An apoptosis inhibitor could inhibit the induced apoptosis. Next, TXA induced calcium overload in chondrocytes and increased ERS-specific protein expression, whereas ERS inhibitor blocked ERS activation and further inhibited chondrocyte apoptosis. CONCLUSIONS We concluded that TXA had a toxic effect on chondrocytes by inducing apoptosis through ERS activation, especially in 50 mg/mL and 100 mg/mL groups. We recommend TXA concentrations of less than 50 mg/mL in joint surgeries. CLINICAL RELEVANCE It is still unclear whether TXA has a toxic effect on cartilage when topically used in joint surgeries. The concentration also varies. This study provides additional evidence that TXA at high concentrations will cause cartilage damage, which will help to provide a new understanding of the clinical administration of TXA.
Collapse
Affiliation(s)
- Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Tianliang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yihe Hu
- Department of Orthopedics, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China.
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Mundy C, Yao L, Shaughnessy KA, Saunders C, Shore EM, Koyama E, Pacifici M. Palovarotene Action Against Heterotopic Ossification Includes a Reduction of Local Participating Activin A-Expressing Cell Populations. JBMR Plus 2023; 7:e10821. [PMID: 38130748 PMCID: PMC10731142 DOI: 10.1002/jbm4.10821] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 12/23/2023] Open
Abstract
Heterotopic ossification (HO) consists of extraskeletal bone formation. One form of HO is acquired and instigated by traumas or surgery, and another form is genetic and characterizes fibrodysplasia ossificans progressiva (FOP). Recently, we and others showed that activin A promotes both acquired and genetic HO, and in previous studies we found that the retinoid agonist palovarotene inhibits both HO forms in mice. Here, we asked whether palovarotene's action against HO may include an interference with endogenous activin A expression and/or function. Using a standard mouse model of acquired HO, we found that activin A and its encoding RNA (Inhba) were prominent in chondrogenic cells within developing HO masses in untreated mice. Single-cell RNAseq (scRNAseq) assays verified that Inhba expression characterized chondroprogenitors and chondrocytes in untreated HO, in addition to its expected expression in inflammatory cells and macrophages. Palovarotene administration (4 mg/kg/d/gavage) caused a sharp inhibition of both HO and amounts of activin A and Inhba transcripts. Bioinformatic analyses of scRNAseq data sets indicated that the drug had reduced interactions and cross-talk among local cell populations. To determine if palovarotene inhibited Inhba expression directly, we assayed primary chondrocyte cultures. Drug treatment inhibited their cartilaginous phenotype but not Inhba expression. Our data reveal that palovarotene markedly reduces the number of local Inhba-expressing HO-forming cell populations. The data broaden the spectrum of HO culprits against which palovarotene acts, accounting for its therapeutic effectiveness. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic SurgeryThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Lutian Yao
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic SurgeryThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of OrthopaedicsThe First Hospital of China Medical UniversityShenyangChina
| | - Kelly A. Shaughnessy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic SurgeryThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Cheri Saunders
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic SurgeryThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Eileen M. Shore
- Departments of Orthopaedic Surgery and Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic SurgeryThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic SurgeryThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| |
Collapse
|
4
|
Scott AK, Casas E, Schneider SE, Swearingen AR, Van Den Elzen CL, Seelbinder B, Barthold JE, Kugel JF, Stern JL, Foster KJ, Emery NC, Brumbaugh J, Neu CP. Mechanical memory stored through epigenetic remodeling reduces cell therapeutic potential. Biophys J 2023; 122:1428-1444. [PMID: 36871159 PMCID: PMC10147835 DOI: 10.1016/j.bpj.2023.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding how cells remember previous mechanical environments to influence their fate, or mechanical memory, informs the design of biomaterials and therapies in medicine. Current regeneration therapies, such as cartilage regeneration procedures, require 2D cell expansion processes to achieve large cell populations critical for the repair of damaged tissues. However, the limit of mechanical priming for cartilage regeneration procedures before inducing long-term mechanical memory following expansion processes is unknown, and mechanisms defining how physical environments influence the therapeutic potential of cells remain poorly understood. Here, we identify a threshold to mechanical priming separating reversible and irreversible effects of mechanical memory. After 16 population doublings in 2D culture, expression levels of tissue-identifying genes in primary cartilage cells (chondrocytes) are not recovered when transferred to 3D hydrogels, while expression levels of these genes were recovered for cells only expanded for eight population doublings. Additionally, we show that the loss and recovery of the chondrocyte phenotype correlates with a change in chromatin architecture, as shown by structural remodeling of the trimethylation of H3K9. Efforts to disrupt the chromatin architecture by suppressing or increasing levels of H3K9me3 reveal that only with increased levels of H3K9me3 did the chromatin architecture of the native chondrocyte phenotype partially return, along with increased levels of chondrogenic gene expression. These results further support the connection between the chondrocyte phenotype and chromatin architecture, and also reveal the therapeutic potential of inhibitors of epigenetic modifiers as disruptors of mechanical memory when large numbers of phenotypically suitable cells are required for regeneration procedures.
Collapse
Affiliation(s)
- Adrienne K Scott
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Eduard Casas
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Stephanie E Schneider
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Alison R Swearingen
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Courtney L Van Den Elzen
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado
| | - Benjamin Seelbinder
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Jeanne E Barthold
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Jennifer F Kugel
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Josh Lewis Stern
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado; Biochemistry and Molecular Genetics, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kyla J Foster
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado
| | - Justin Brumbaugh
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado; Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
5
|
Jiang S, Zhang C, Lu Y, Yuan F. Mechanical stress-caused chondrocyte dysfunction and cartilage injury can be attenuated by dioscin via activating sirtuin1/forkhead box O1. J Biochem Mol Toxicol 2022; 36:e23212. [PMID: 36106352 DOI: 10.1002/jbt.23212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/06/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Sirtuin1 (Sirt1)/forkhead box O1 (FoxO1) axis has been reported as a crucial regulator involved in chondral homeostasis of healthy or osteoarthritis (OA) cartilage. In our study, the aim is to investigate whether dioscin functions as an activator of Sirt1/FoxO1 to protect against mechanical stress-induced chondrocyte dysfunction in vitro and in vivo models. HERB and PubChem databases were implemented to predict dioscin-related gene targets. Cell and mouse models of OA were established to determine the pharmacological value of dioscin, a steroidal saponin. Cartilage loss in the knee joint was detected by Safranin O staining. Phosphorylation and nucleocytoplasmic shuttling of FoxO1 was observed in mechanical stress-stimulated chondrocyte and anterior cruciate ligament transection-induced cartilage injury. However, dioscin treatment repressed FoxO1 phosphorylation and cytoplasmic transfer and elevated Sirt1 protein expression. Dioscin treatment reversed mechanical stress-induced growth inhibition and apoptosis of chondrocytes and improved cartilage degradation and bone loss in the epiphysis of the distal femur. Moreover, dioscin could maintain the normal phenotype of chondrocytes via mediating multiple gene expressions. Dioscin inhibited apoptosis and metabolic disorders in OA-like chondrocytes via maintaining the transcriptional activity of FoxO1 and enhancing Sirt1 expression. Dioscin might be a potential Sirt1 activator providing a novel therapeutic schedule for the treatment of OA.
Collapse
Affiliation(s)
- Shilin Jiang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Chengyuan Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Ye Lu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yuan
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Jurynec MJ, Gavile CM, Honeggar M, Ma Y, Veerabhadraiah SR, Novak KA, Hoshijima K, Kazmers NH, Grunwald DJ. NOD/RIPK2 signalling pathway contributes to osteoarthritis susceptibility. Ann Rheum Dis 2022; 81:1465-1473. [PMID: 35732460 PMCID: PMC9474725 DOI: 10.1136/annrheumdis-2022-222497] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022]
Abstract
OBJECTIVES How inflammatory signalling contributes to osteoarthritis (OA) susceptibility is undetermined. An allele encoding a hyperactive form of the Receptor Interacting Protein Kinase 2 (RIPK2) proinflammatory signalling intermediate has been associated with familial OA. To test whether altered nucleotide-binding oligomerisation domain (NOD)/RIPK2 pathway activity causes heightened OA susceptibility, we investigated whether variants affecting additional pathway components are associated with familial OA. To determine whether the Ripk2104Asp disease allele is sufficient to account for the familial phenotype, we determined the effect of the allele on mice. METHODS Genomic analysis of 150 independent families with dominant inheritance of OA affecting diverse joints was used to identify coding variants that segregated strictly with occurrence of OA. Genome editing was used to introduce the OA-associated RIPK2 (p.Asn104Asp) allele into the genome of inbred mice. The consequences of the Ripk2104Asp disease allele on physiology and OA susceptibility in mice were measured by histology, immunohistochemistry, serum cytokine levels and gene expression. RESULTS We identified six novel variants affecting components of the NOD/RIPK2 inflammatory signalling pathway that are associated with familial OA affecting the hand, shoulder or foot. The Ripk2104Asp allele acts dominantly to alter basal physiology and response to trauma in the mouse knee. Whereas the knees of uninjured Ripk2Asp104 mice appear normal histologically, the joints exhibit a set of marked gene expression changes reminiscent of overt OA. Although the Ripk2104Asp mice lack evidence of chronically elevated systemic inflammation, they do exhibit significantly increased susceptibility to post-traumatic OA (PTOA). CONCLUSIONS Two types of data support the hypothesis that altered NOD/RIPK2 signalling confers susceptibility to OA.
Collapse
Affiliation(s)
- Michael J Jurynec
- Department of Orthopaedics, University of Utah Health, Salt Lake City, Utah, USA
- Department of Human Genetics, University of Utah Health, Salt Lake City, Utah, USA
| | - Catherine M Gavile
- Department of Orthopaedics, University of Utah Health, Salt Lake City, Utah, USA
| | - Matthew Honeggar
- Department of Orthopaedics, University of Utah Health, Salt Lake City, Utah, USA
| | - Ying Ma
- Department of Orthopaedics, University of Utah Health, Salt Lake City, Utah, USA
| | | | - Kendra A Novak
- Department of Orthopaedics, University of Utah Health, Salt Lake City, Utah, USA
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah Health, Salt Lake City, Utah, USA
| | - Nikolas H Kazmers
- Department of Orthopaedics, University of Utah Health, Salt Lake City, Utah, USA
| | - David J Grunwald
- Department of Human Genetics, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Silencing of Angiopoietin-Like Protein 4 (Angptl4) Decreases Inflammation, Extracellular Matrix Degradation, and Apoptosis in Osteoarthritis via the Sirtuin 1/NF-κB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1135827. [PMID: 36071864 PMCID: PMC9442503 DOI: 10.1155/2022/1135827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Osteoarthritis (OA) is a frequently observed condition in aged people. OA cartilage is characterized by chondrocyte apoptosis, chondrocyte inflammation, and hyperactive catabolism of extracellular matrix. However, the specific molecular mechanisms remain unclear. Recent data has shown that Angptl4, a multifunctional cytokine, is involved in the regulation of inflammatory and apoptosis responses in different tissues. This study is aimed at defining the role of Angptl4 in the development of OA. We employed X-ray analysis, safranin O-fast green (S-O) staining, and hematoxylin staining to evaluate histomorphological characteristics in the knee joint of mice. Real-time quantitative polymerase chain reaction, Western blot assays, immunofluorescence staining, and enzyme-linked immunosorbent assays (ELISA) were performed to analyze the changes in gene and protein expression. Mechanically, our data demonstrated that Angptl4 knockdown improved the degradation of extracellular matrix and reduced TNF-α-mediated chondrocyte inflammation and apoptosis by suppressing sirtuin 1/NF-κB signaling pathway. In addition, animal studies showed that the suppression of Angptl4 expression might alleviate OA development. In conclusion, our findings revealed the underlying mechanisms of Angptl4 regulation in chondrocytes and its potential value in the treatment of OA.
Collapse
|
8
|
Li X, Yang S, Chinipardaz Z, Koyama E, Yang S. SAG therapy restores bone growth and reduces enchondroma incidence in a model of skeletal chondrodysplasias caused by Ihh deficiency. Mol Ther Methods Clin Dev 2021; 23:461-475. [PMID: 34820473 PMCID: PMC8591400 DOI: 10.1016/j.omtm.2021.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/22/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Inactivation mutations in the Indian hedgehog (Ihh) gene in humans cause numerous skeletal chondrodysplasias, including acrocapitofemoral dysplasia, brachydactyly type A1, and human short stature. The lack of an appropriate human-relevant model to accurately represent these chondrodysplasias has hampered the identification of clinically effective treatments. Here, we established a mouse model of human skeletal dysplasia induced by Ihh gene mutations via ablation of Ihh in Aggrecan-positive (Acan+) cells using Aggrecan (Acan)-creERT transgenic mice. Smoothen agonist (SAG) promoted Hh activity and rescued chondrocyte proliferation and differentiation by stimulating smoothened trafficking to the cilium in Ihh-silenced cells. SAG treatment corrected mouse stature and significantly decreased mortality without evidence of toxicity. Moreover, Ihh ablation in Acan+ cells produced enchondroma-like tissues near the growth plates that were significantly reduced by SAG treatment. These results demonstrated that SAG effectively treats skeletal dysplasia caused by Ihh gene mutations in a mouse model, suggesting that SAG may represent a potential drug for the treatment of these diseases and/or enchondromas.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Department of Spinal Surgery, East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Shuting Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zahra Chinipardaz
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eiki Koyama
- Division of Orthopedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shuying Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, PA 19104, USA.,The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Catheline SE, Bell RD, Oluoch LS, James MN, Escalera-Rivera K, Maynard RD, Chang ME, Dean C, Botto E, Ketz JP, Boyce BF, Zuscik MJ, Jonason JH. IKKβ-NF-κB signaling in adult chondrocytes promotes the onset of age-related osteoarthritis in mice. Sci Signal 2021; 14:eabf3535. [PMID: 34546791 DOI: 10.1126/scisignal.abf3535] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard D Bell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Luke S Oluoch
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - M Nick James
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine Escalera-Rivera
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Robert D Maynard
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Martin E Chang
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher Dean
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Elizabeth Botto
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - John P Ketz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Brendan F Boyce
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael J Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.,Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
10
|
Deletion of Glut1 in early postnatal cartilage reprograms chondrocytes toward enhanced glutamine oxidation. Bone Res 2021; 9:38. [PMID: 34426569 PMCID: PMC8382841 DOI: 10.1038/s41413-021-00153-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/04/2021] [Accepted: 02/28/2021] [Indexed: 12/18/2022] Open
Abstract
Glucose metabolism is fundamental for the functions of all tissues, including cartilage. Despite the emerging evidence related to glucose metabolism in the regulation of prenatal cartilage development, little is known about the role of glucose metabolism and its biochemical basis in postnatal cartilage growth and homeostasis. We show here that genetic deletion of the glucose transporter Glut1 in postnatal cartilage impairs cell proliferation and matrix production in growth plate (GPs) but paradoxically increases cartilage remnants in the metaphysis, resulting in shortening of long bones. On the other hand, articular cartilage (AC) with Glut1 deficiency presents diminished cellularity and loss of proteoglycans, which ultimately progress to cartilage fibrosis. Moreover, predisposition to Glut1 deficiency severely exacerbates injury-induced osteoarthritis. Regardless of the disparities in glucose metabolism between GP and AC chondrocytes under normal conditions, both types of chondrocytes demonstrate metabolic plasticity to enhance glutamine utilization and oxidation in the absence of glucose availability. However, uncontrolled glutamine flux causes collagen overmodification, thus affecting extracellular matrix remodeling in both cartilage compartments. These results uncover the pivotal and distinct roles of Glut1-mediated glucose metabolism in two of the postnatal cartilage compartments and link some cartilage abnormalities to altered glucose/glutamine metabolism.
Collapse
|
11
|
Single-Cell RNA-Seq Reveals Transcriptomic Heterogeneity and Post-Traumatic Osteoarthritis-Associated Early Molecular Changes in Mouse Articular Chondrocytes. Cells 2021; 10:cells10061462. [PMID: 34200880 PMCID: PMC8230441 DOI: 10.3390/cells10061462] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Articular cartilage is a connective tissue lining the surfaces of synovial joints. When the cartilage severely wears down, it leads to osteoarthritis (OA), a debilitating disease that affects millions of people globally. The articular cartilage is composed of a dense extracellular matrix (ECM) with a sparse distribution of chondrocytes with varying morphology and potentially different functions. Elucidating the molecular and functional profiles of various chondrocyte subtypes and understanding the interplay between these chondrocyte subtypes and other cell types in the joint will greatly expand our understanding of joint biology and OA pathology. Although recent advances in high-throughput OMICS technologies have enabled molecular-level characterization of tissues and organs at an unprecedented resolution, thorough molecular profiling of articular chondrocytes has not yet been undertaken, which may be in part due to the technical difficulties in isolating chondrocytes from dense cartilage ECM. In this study, we profiled articular cartilage from healthy and injured mouse knee joints at a single-cell resolution and identified nine chondrocyte subtypes with distinct molecular profiles and injury-induced early molecular changes in these chondrocytes. We also compared mouse chondrocyte subpopulations to human chondrocytes and evaluated the extent of molecular similarity between mice and humans. This work expands our view of chondrocyte heterogeneity and rapid molecular changes in chondrocyte populations in response to joint trauma and highlights potential mechanisms that trigger cartilage degeneration.
Collapse
|
12
|
Yang L, Fan C, Shu T, Wang S. Punicalin alleviates TNF-α- and IL-1β-induced chondrocyte dysfunction and cartilage metabolism via mediating FOXO3 signaling axis. J Food Biochem 2021; 45:e13755. [PMID: 33974280 DOI: 10.1111/jfbc.13755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Forkhead box O3 (FOXO3) transcription factor is involved in chondral homeostasis of normal, aging and osteoarthritis (OA) cartilage. At present, we aimed to investigate whether FOXO3 is a target of punicalin to prevent IL-1β- and TNF-α-induced chondrocyte dysfunction in vitro and in vivo models. Cell and mouse models of chondrocyte dysfunction were established to determine the pharmacological value of hydrolyzable tannin, punicalin, which was extracted from the pomegranate. FOXO3 protein levels in the nucleus and cytoplasm were analysed using western blot. Safranine O staining was performed to evaluate the expansion of growth plate and chondrocyte differentiation in IL-1β- and TNF-α-treated mice. In IL-1β- and TNF-α-treated chondrocytes and mice, IL-1β and TNF-α evoked phosphorylation and nucleocytoplasmic shuttling of FOXO3, as well as reduced FOXO3 expression levels in the nucleus. However, punicalin treatment repressed FOXO3 phosphorylation and cytoplasmic transfer. Punicalin treatment improved IL-1β and TNF-α-induced growth inhibition and apoptosis of chondrocyte and the abnormal expansion of growth plate and hypertrophic zone. Moreover, punicalin could maintain the normal phenotype of chondrocyte via mediating multiple gene expression. Punicalin showed a beneficial effect on IL-1β- and TNF-α-stimulated chondrocytes and cartilaginous metabolic disorders via preserving the transcriptional activity of FOXO3. PRACTICAL APPLICATIONS: Our study presents a prospective adjuvant therapeutic drug, punicalin, to prevent inflammation-related cartilage injury and chondrocyte dysfunction.
Collapse
Affiliation(s)
- Lin Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, P.R. China
| | - Changdong Fan
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, P.R. China
| | - Taipengfei Shu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, P.R. China
| | - Shujun Wang
- Department of Rheumatology, Zibo Central Hospital, Zibo, 255036, Shandong Province, P.R. China
| |
Collapse
|
13
|
BMP5 silencing inhibits chondrocyte senescence and apoptosis as well as osteoarthritis progression in mice. Aging (Albany NY) 2021; 13:9646-9664. [PMID: 33744859 PMCID: PMC8064147 DOI: 10.18632/aging.202708] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
In this study, we using the in vivo destabilization of the medial meniscus (DMM) mouse model to investigate the role of bone morphogenetic protein 5 (BMP5) in osteoarthritis (OA) progression mediated via chondrocyte senescence and apoptosis. BMP5 expression was significantly higher in knee articular cartilage tissues of OA patients and DMM model mice than the corresponding controls. The Osteoarthritis Research Society International scores based on histological staining of knee articular cartilage sections were lower in DMM mice where BMP5 was knocked down in chondrocytes than the corresponding controls 4 weeks after DMM surgery. DMM mice with BMP5-deficient chondrocytes showed reduced levels of matrix-degrading enzymes such as MMP13 and ADAMTS5 as well as reduced cartilage destruction. BMP5 knockdown also decreased chondrocyte apoptosis and senescence by suppressing the activation of p38 and ERK MAP kinases. These findings demonstrate that BMP5 silencing inhibits chondrocyte senescence and apoptosis as well as OA progression by downregulating activity in the p38/ERK signaling pathway.
Collapse
|
14
|
Wang H, Zhang H, Fan K, Zhang D, Hu A, Zeng X, Liu YL, Tan G, Wang H. Frugoside delays osteoarthritis progression via inhibiting miR-155-modulated synovial macrophage M1 polarization. Rheumatology (Oxford) 2021; 60:4899-4909. [PMID: 33493345 DOI: 10.1093/rheumatology/keab018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Direct inhibition of M1 polarization of synovial macrophages may be a useful therapeutic treatment for OA and OA-associated synovitis. Frugoside (FGS) is a cardiac glycoside compound isolated and extracted from Calotropis gigantea. Cardiac glycosides possess interesting anti-inflammatory potential. However, the corresponding activity of FGS has not been reported. Therefore, our aim was to find direct evidence of the effects of FGS on synovial macrophage M1 polarization and OA control. METHODS Collagenase was used to establish an experimental mouse OA model (CIOA) with considerable synovitis. Then, FGS was intra-articular administered. The mRNA and protein levels of iNOS were analysed by real-time PCR and Western blotting in vitro. Immunohistochemical and immunofluorescence staining were used to measure the expression of F4/80, iNOS, Col2α1 and MMP13 in vivo. The levels of pro-inflammatory cytokines in FGS-treated M1 macrophage culture supernatants were analysed by flow cytometry. RESULTS FGS attenuates synovial inflammation and delays the development of OA in CIOA mice. Further results demonstrate that FGS inhibits macrophage M1 polarization in vitro and in vivo, which subsequently decreases the secretion of IL-6 and TNF-α, in turn delaying cartilage and extracellular matrix (ECM) degradation and chondrocyte hypertrophy. FGS inhibits macrophage M1 polarization by partially downregulating miR-155 levels. CONCLUSION This study demonstrates that intra-articular injection of FGS is a potential strategy for OA prevention and treatment, even at an early stage of disease progression. This is a novel function of FGS and has promising future clinical applications.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou
| | - Haiyan Zhang
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Kai Fan
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Danyang Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou
| | - Aihau Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou
| | - Xiangzhou Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou
| | - Yan Li Liu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Guanghong Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou
| | - Hua Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou
| |
Collapse
|
15
|
Haseeb A, Lefebvre V. Isolation of Mouse Growth Plate and Articular Chondrocytes for Primary Cultures. Methods Mol Biol 2021; 2245:39-51. [PMID: 33315194 DOI: 10.1007/978-1-0716-1119-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cartilage is a connective tissue presenting in several forms that are all essential components of the vertebrate skeleton. Complementing in vivo models, cultures of its resident cells-chondrocytes-are important experimental models in mechanistic and preclinical studies relevant to skeletal development and adult homeostasis and to such human pathologies as chondrodysplasias and osteoarthritis. Both growth plate and articular chondrocytes produce pancartilaginous extracellular matrix components, but the two cell subtypes also have distinct phenotypic properties that account for different structural features, functions, and fates of their tissues. Based on study goals, primary chondrocyte cultures should therefore be established from either growth plate or articular cartilage. Here, we describe the methods used in our laboratory to isolate and culture growth plate and articular chondrocytes from neonatal and adult mice, respectively. Both methods involve manual and enzymatic procedures to clean cartilage samples from contaminating tissues and to release chondrocytes as single-cell suspensions from their cartilage matrix.
Collapse
Affiliation(s)
- Abdul Haseeb
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Véronique Lefebvre
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Nummenmaa E, Hämäläinen M, Pemmari A, Moilanen LJ, Tuure L, Nieminen RM, Moilanen T, Vuolteenaho K, Moilanen E. Transient Receptor Potential Ankyrin 1 (TRPA1) Is Involved in Upregulating Interleukin-6 Expression in Osteoarthritic Chondrocyte Models. Int J Mol Sci 2020; 22:ijms22010087. [PMID: 33374841 PMCID: PMC7794684 DOI: 10.3390/ijms22010087] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a membrane-bound ion channel found in neurons, where it mediates nociception and neurogenic inflammation. Recently, we have discovered that TRPA1 is also expressed in human osteoarthritic (OA) chondrocytes and downregulated by the anti-inflammatory drugs aurothiomalate and dexamethasone. We have also shown TRPA1 to mediate inflammation, pain, and cartilage degeneration in experimental osteoarthritis. In this study, we investigated the role of TRPA1 in joint inflammation, focusing on the pro-inflammatory cytokine interleukin-6 (IL-6). We utilized cartilage/chondrocytes from wild-type (WT) and TRPA1 knockout (KO) mice, along with primary chondrocytes from OA patients. The results show that TRPA1 regulates the synthesis of the OA-driving inflammatory cytokine IL-6 in chondrocytes. IL-6 was highly expressed in WT chondrocytes, and its expression, along with the expression of IL-6 family cytokines leukemia inhibitory factor (LIF) and IL-11, were significantly downregulated by TRPA1 deficiency. Furthermore, treatment with the TRPA1 antagonist significantly downregulated the expression of IL-6 in chondrocytes from WT mice and OA patients. The results suggest that TRPA1 is involved in the upregulation of IL-6 production in chondrocytes. These findings together with previous results on the expression and functions of TRPA1 in cellular and animal models point to the role of TRPA1 as a potential mediator and novel drug target in osteoarthritis.
Collapse
Affiliation(s)
- Elina Nummenmaa
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Lauri J. Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Riina M. Nieminen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
- Coxa Hospital for Joint Replacement, FI-33520 Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
- Correspondence:
| |
Collapse
|
17
|
Stiffel VM, Thomas A, Rundle CH, Sheng MHC, Lau KHW. The EphA4 Signaling is Anti-catabolic in Synoviocytes but Pro-anabolic in Articular Chondrocytes. Calcif Tissue Int 2020; 107:576-592. [PMID: 32816052 PMCID: PMC7606366 DOI: 10.1007/s00223-020-00747-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
Abstract
The expression and activation of EphA4 in the various cell types in a knee joint was upregulated upon an intraarticular injury. To determine if EphA4 signaling plays a role in osteoarthritis, we determined whether deficient EphA4 expression (in EphA4 knockout mice) or upregulation of the EphA4 signaling (with the EfnA4-fc treatment) would alter cellular functions of synoviocytes and articular chondrocytes. In synoviocytes, deficient EphA4 expression enhanced, whereas activation of the EphA4 signaling reduced, expression and secretion of key inflammatory cytokines and matrix metalloproteases. Conversely, in articular chondrocytes, activation of the EphA4 signaling upregulated, while deficient EphA4 expression reduced, expression levels of chondrogenic genes (e.g., aggrecan, lubricin, type-2 collagen, and Sox9). EfnA4-fc treatment in wildtype, but not EphA4-deficient, articular chondrocytes promoted the formation and activity of acidic proteoglycan-producing colonies. Activation of the EphA4 signaling in articular chondrocytes upregulated Rac1/2 and downregulated RhoA via enhancing Vav1 and reducing Ephexin1 activation, respectively. However, activation of the EphA4 signaling in synoviocytes suppressed the Vav/Rac signaling while upregulated the Ephexin/Rho signaling. In summary, the EphA4 signaling in synoviocytes is largely of anti-catabolic nature through suppression of the expression of inflammatory cytokines and matrix proteases, but in articular chondrocytes the signaling is pro-anabolic in that it promotes the biosynthesis of articular cartilage. The contrasting action of the EphA4 signaling in synoviocytes as opposing to articular chondrocytes may in part be mediated through the opposite differential effects of the EphA4 signaling on the Vav/Rac signaling and Ephexin/Rho signaling in the two skeletal cell types.
Collapse
Affiliation(s)
- Virginia M Stiffel
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | - Alexander Thomas
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Charles H Rundle
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Matilda H-C Sheng
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA.
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
18
|
Zhu S, Deng Y, Gao H, Huang K, Nie Z. miR‐877‐5p alleviates chondrocyte dysfunction in osteoarthritis models via repressing FOXM1. J Gene Med 2020; 22:e3246. [PMID: 32584470 DOI: 10.1002/jgm.3246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shaobo Zhu
- Department of Orthopaedic Trauma and Microsurgery Zhongnan Hospital of Wuhan University Wuhan Hubei Province China
| | - Yu Deng
- Department of Orthopaedic Trauma and Microsurgery Zhongnan Hospital of Wuhan University Wuhan Hubei Province China
| | - Hui Gao
- Department of Orthopaedic Trauma and Microsurgery Zhongnan Hospital of Wuhan University Wuhan Hubei Province China
| | - Kaiyuan Huang
- Department of Orthopaedic Huangshi No. 4 Hospital Huangshi Hubei Province China
| | - Zhongjie Nie
- Department of Orthopaedic Huangshi No. 4 Hospital Huangshi Hubei Province China
| |
Collapse
|
19
|
Arra M, Swarnkar G, Ke K, Otero JE, Ying J, Duan X, Maruyama T, Rai MF, O'Keefe RJ, Mbalaviele G, Shen J, Abu-Amer Y. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat Commun 2020; 11:3427. [PMID: 32647171 PMCID: PMC7347613 DOI: 10.1038/s41467-020-17242-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/19/2020] [Indexed: 01/20/2023] Open
Abstract
The contribution of inflammation to the chronic joint disease osteoarthritis (OA) is unclear, and this lack of clarity is detrimental to efforts to identify therapeutic targets. Here we show that chondrocytes under inflammatory conditions undergo a metabolic shift that is regulated by NF-κB activation, leading to reprogramming of cell metabolism towards glycolysis and lactate dehydrogenase A (LDHA). Inflammation and metabolism can reciprocally modulate each other to regulate cartilage degradation. LDHA binds to NADH and promotes reactive oxygen species (ROS) to induce catabolic changes through stabilization of IκB-ζ, a critical pro-inflammatory mediator in chondrocytes. IκB-ζ is regulated bi-modally at the stages of transcription and protein degradation. Overall, this work highlights the function of NF-κB activity in the OA joint as well as a ROS promoting function for LDHA and identifies LDHA as a potential therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Manoj Arra
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gaurav Swarnkar
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ke Ke
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jesse E Otero
- OrthoCarolina Hip and Knee Center, Charlotte, NC, 28207, USA
| | - Jun Ying
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Takashi Maruyama
- Department of Immunology, Akita University School of Medicine, Akita, Japan
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gabriel Mbalaviele
- Bone and Mineral Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jie Shen
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Shriners Hospital for Children, St. Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Han T, Mignatti P, Abramson SB, Attur M. Periostin interaction with discoidin domain receptor-1 (DDR1) promotes cartilage degeneration. PLoS One 2020; 15:e0231501. [PMID: 32330138 PMCID: PMC7182230 DOI: 10.1371/journal.pone.0231501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is characterized by progressive loss of articular cartilage accompanied by the new bone formation and, often, a synovial proliferation that culminates in pain, loss of joint function, and disability. However, the cellular and molecular mechanisms of OA progression and the relative contributions of cartilage, bone, and synovium remain unclear. We recently found that the extracellular matrix (ECM) protein periostin (Postn, or osteoblast-specific factor, OSF-2) is expressed at high levels in human OA cartilage. Multiple groups have also reported elevated expression of Postn in several rodent models of OA. We have previously reported that in vitro Postn promotes collagen and proteoglycan degradation in human chondrocytes through AKT/β-catenin signaling and downstream activation of MMP-13 and ADAMTS4 expression. Here we show that Postn induces collagen and proteoglycan degradation in cartilage by signaling through discoidin domain receptor-1 (DDR1), a receptor tyrosine kinase. The genetic deficiency or pharmacological inhibition of DDR1 in mouse chondrocytes blocks Postn-induced MMP-13 expression. These data show that Postn is signaling though DDR1 is mechanistically involved in OA pathophysiology. Specific inhibitors of DDR1 may provide therapeutic opportunities to treat OA.
Collapse
Affiliation(s)
- Tianzhen Han
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, New York, NY, United States of America
| | - Paolo Mignatti
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, New York, NY, United States of America
| | - Steven B. Abramson
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, New York, NY, United States of America
| | - Mukundan Attur
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, New York, NY, United States of America
| |
Collapse
|
21
|
Vande Catsyne CA, Sayyed SA, Molina-Ortiz P, Moes B, Communi D, Muller J, Heusschen R, Caers J, Azzi A, Erneux C, Schurmans S. Altered chondrocyte differentiation, matrix mineralization and MEK-Erk1/2 signaling in an INPPL1 catalytic knock-out mouse model of opsismodysplasia. Adv Biol Regul 2019; 76:100651. [PMID: 31519471 DOI: 10.1016/j.jbior.2019.100651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 11/25/2022]
Abstract
Opsismodysplasia (OPS) is a rare but severe autosomal recessive skeletal chondrodysplasia caused by inactivating mutations in the Inppl1/Ship2 gene. The molecular mechanism leading from Ship2 gene inactivation to OPS is currently unknown. Here, we used our Ship2Δ/Δ mouse expressing reduced amount of a catalytically-inactive SHIP2 protein and a previously reported SHIP2 inhibitor to investigate growth plate development and mineralization in vivo, ex vivo and in vitro. First, as observed in OPS patients, catalytic inactivation of SHIP2 in mouse leads to reduced body length, shortening of long bones, craniofacial dysmorphism, reduced height of the hyperthrophic chondrocyte zone and to defects in growth plate mineralization. Second, intrinsic Ship2Δ/Δ bone defects were sufficient to induce the characteristic OPS alterations in bone growth, histology and mineralization ex vivo. Third, expression of osteocalcin was significantly increased in SHIP2-inactivated chondrocyte cultures whereas production of mineralized nodules was markedly decreased. Targeting osteocalcin mRNA with a specific shRNA increased the production of mineralized nodules. Fourth, levels of p-MEK and p-Erk1/2 were significantly increased in SHIP2-inactivated chondrocytes in response to serum and IGF-1, but not to FGF2, as compared to control chondrocytes. Treatment of chondrocytes and bones in culture with a MEK inhibitor partially rescued the production of mineralized nodules, the size of the hypertrophic chondrocyte zone and bone growth, raising the possibility of a treatment that could partially reduce the phenotype of this severe condition. Altogether, our results indicate that Ship2Δ/Δ mice represent a relevant model for human OPS. They also highlight the important role of SHIP2 in chondrocytes during endochondral ossification and its different differentiation steps. Finally, we identified a role of osteocalcin in mineralized nodules production and for the MEK-Erk1/2 signaling pathway in the OPS phenotype.
Collapse
Affiliation(s)
- Charles-Andrew Vande Catsyne
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Sufyan Ali Sayyed
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Patricia Molina-Ortiz
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Bastien Moes
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - David Communi
- IRIBHM, Bat. C, Campus Hôpital Erasme, Université Libre de Bruxelles, route de Lennik 808, 1070, Bruxelles, Belgium
| | - Joséphine Muller
- Laboratory of Hematology, GIGA-Inflammation, Infection & Immunity, GIGA-B34, CHU Sart Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Roy Heusschen
- Laboratory of Hematology, GIGA-Inflammation, Infection & Immunity, GIGA-B34, CHU Sart Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA-Inflammation, Infection & Immunity, GIGA-B34, CHU Sart Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Abdelhalim Azzi
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Christophe Erneux
- IRIBHM, Bat. C, Campus Hôpital Erasme, Université Libre de Bruxelles, route de Lennik 808, 1070, Bruxelles, Belgium
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium.
| |
Collapse
|
22
|
Catheline SE, Hoak D, Chang M, Ketz JP, Hilton MJ, Zuscik MJ, Jonason JH. Chondrocyte-Specific RUNX2 Overexpression Accelerates Post-traumatic Osteoarthritis Progression in Adult Mice. J Bone Miner Res 2019; 34:1676-1689. [PMID: 31189030 PMCID: PMC7047611 DOI: 10.1002/jbmr.3737] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
RUNX2 is a transcription factor critical for chondrocyte maturation and normal endochondral bone formation. It promotes the expression of factors catabolic to the cartilage extracellular matrix and is upregulated in human osteoarthritic cartilage and in murine articular cartilage following joint injury. To date, in vivo studies of RUNX2 overexpression in cartilage have been limited to forced expression in osteochondroprogenitor cells preventing investigation into the effects of chondrocyte-specific RUNX2 overexpression in postnatal articular cartilage. Here, we used the Rosa26Runx2 allele in combination with the inducible Col2a1CreERT2 transgene or the inducible AcanCreERT2 knock-in allele to achieve chondrocyte-specific RUNX2 overexpression (OE) during embryonic development or in the articular cartilage of adult mice, respectively. RUNX2 OE was induced at embryonic day 13.5 (E13.5) for all developmental studies. Histology and in situ hybridization analyses suggest an early onset of chondrocyte hypertrophy and accelerated terminal maturation in the limbs of the RUNX2 OE embryos compared to control embryos. For all postnatal studies, RUNX2 OE was induced at 2 months of age. Surprisingly, no histopathological signs of cartilage degeneration were observed even 6 months following induction of RUNX2 OE. Using the meniscal/ligamentous injury (MLI), a surgical model of knee joint destabilization and meniscal injury, however, we found that RUNX2 OE accelerates the progression of cartilage degeneration following joint trauma. One month following MLI, the numbers of MMP13-positive and TUNEL-positive chondrocytes were significantly greater in the articular cartilage of the RUNX2 OE joints compared to control joints and 2 months following MLI, histomorphometry and Osteoarthritis Research Society International (OARSI) scoring revealed decreased cartilage area in the RUNX2 OE joints. Collectively, these results suggest that although RUNX2 overexpression alone may not be sufficient to initiate the OA degenerative process, it may predetermine the rate of OA onset and/or progression following traumatic joint injury. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Donna Hoak
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Martin Chang
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - John P Ketz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Michael J Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Orthopedic Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
23
|
Liu X, Liu L, Zhang H, Shao Y, Chen Z, Feng X, Fang H, Zhao C, Pan J, Zhang H, Zeng C, Cai D. MiR-146b accelerates osteoarthritis progression by targeting alpha-2-macroglobulin. Aging (Albany NY) 2019; 11:6014-6028. [PMID: 31422941 PMCID: PMC6738400 DOI: 10.18632/aging.102160] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023]
Abstract
Osteoarthritis (OA) is an aging-related chronic degenerative disease characterized by the degradation of chondrocyte extracellular matrix (ECM). Previous studies have suggested that microRNAs (miRNAs) are associated with OA, but the role of miR-146b in OA remains unclear. The aim of this study was to determine the role of miR-146b in OA progression. The effect of miR-146b on ECM degradation were studied in mouse chondrocytes transfected with miRNA and treated with IL-1β. Cell viability and the expression levels of proteolytic enzymes in the transfected cells were assessed by real-time RT-PCR, ELISA and Western blots. We found downregulation of miR-146b expression in chondrocytes dramatically inhibited IL-1β-induced caspase activation and proteolytic enzyme expression via influencing its targeted Alpha-2-macroglobulin (A2M). Luciferase reporter assays confirmed that A2M mRNA was negatively regulated by miR-146b in chondrocytes. Intra-articular injection of antago-miR-146b against miR-146b effectively protected mice from the progression of DMM-induced osteoarthritis by inhibiting cartilage proteoglycan degradation. Our study indicates that miR-146b plays a critical role in the progression of injury-induced osteoarthritis by directly targeting A2M expression to elevate the proteolytic enzyme production and stimulate chondrocytes apoptosis, and miR-146b as well as A2M could be therapeutic targets.
Collapse
Affiliation(s)
- Xin Liu
- Department of Orthopedics, Academy of Orthopaedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| | - Liangliang Liu
- Department of Orthopedics, Academy of Orthopaedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| | - Hongbo Zhang
- Department of Orthopedics, Academy of Orthopaedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| | - Yan Shao
- Department of Orthopedics, Academy of Orthopaedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| | - Ziyu Chen
- Department of Orthopedics, Academy of Orthopaedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| | - Xiaofeng Feng
- Department of Orthopedics, Academy of Orthopaedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| | - Hang Fang
- Department of Orthopedics, Academy of Orthopaedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| | - Chang Zhao
- Department of Orthopedics, Academy of Orthopaedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| | - Jianying Pan
- Department of Orthopedics, Academy of Orthopaedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| | - Haiyan Zhang
- Department of Orthopedics, Academy of Orthopaedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| | - Chun Zeng
- Department of Orthopedics, Academy of Orthopaedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| | - Daozhang Cai
- Department of Orthopedics, Academy of Orthopaedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| |
Collapse
|
24
|
Tuure L, Hämäläinen M, Nummenmaa E, Moilanen T, Moilanen E. Downregulation of microsomal prostaglandin E synthase-1 (mPGES-1) expression in chondrocytes is regulated by MAP kinase phosphatase-1 (MKP-1). Int Immunopharmacol 2019; 71:139-143. [DOI: 10.1016/j.intimp.2019.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/03/2023]
|
25
|
Bonitz M, Schaffer C, Amling M, Poertner R, Schinke T, Jeschke A. Secreted factors from synovial fibroblasts immediately regulate gene expression in articular chondrocytes. Gene 2019; 698:1-8. [DOI: 10.1016/j.gene.2019.02.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 11/15/2022]
|
26
|
Semaphorin 4A acts in a feed-forward loop with NF-κB pathway to exacerbate catabolic effect of IL-1β on chondrocytes. Int Immunopharmacol 2019; 69:88-94. [DOI: 10.1016/j.intimp.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/15/2018] [Accepted: 01/04/2019] [Indexed: 01/06/2023]
|
27
|
USP14-mediated IκBα degradation exacerbates NF-κB activation and IL-1β-stimulated chondrocyte dedifferentiation. Life Sci 2019; 218:147-152. [DOI: 10.1016/j.lfs.2018.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/02/2018] [Accepted: 12/10/2018] [Indexed: 11/19/2022]
|
28
|
Yin W, Lei Y. Leonurine inhibits IL-1β induced inflammation in murine chondrocytes and ameliorates murine osteoarthritis. Int Immunopharmacol 2018; 65:50-59. [PMID: 30273917 DOI: 10.1016/j.intimp.2018.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/27/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage degradation, subchondral bone sclerosis and synovitis. Leonurine, an active component extracted from the leaves of Herba leonuri, has been reported to possess various potent biological effects such as anti-oxidant, anti-apoptosis, and anti-inflammatory. However, the therapeutic benefits of leonurine on OA have not been reported. This study aimed to evaluate the therapeutic effect of leonurine on chondrocytes and in murine OA models. Murine chondrocytes were pre-treated with leonurine (5, 10, and 20 μM) for 2 h and then stimulated with IL-1β for 24 h. Production of NO, PGE2, IL-6, TNF-α, MMP-3, MMP-13, and ADAMTS-5 was assessed with the Griess reagent and ELISAs. The mRNA expression of COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5, aggrecan, and collagen-II was tested with real-time polymerase chain reaction. The protein expression of iNOS, COX-2 and NF-κB-related signaling molecules was measured with western blotting. In this study, leonurine visibly inhibited the IL-1β-induced production of NO, PGE2, IL-6 and TNF-α; and decreased the expression of iNOS, COX-2, MMP-3, MMP-13 and ADAMTS-5 in chondrocytes. Furthermore, leonurine significantly suppressed IL-1β-stimulated NF-κB activation. In addition, treatment with leonurine not only prevented cartilage destruction and subchondral bone thickening, but also alleviated synovitis in a murine OA model. Taken together, these results suggest that leonurine may be a potential therapeutic agent in OA treatment.
Collapse
Affiliation(s)
- Wenhua Yin
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Medical College of Shantou University, Shaoguan 512026, China.
| | - Ying Lei
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Medical College of Shantou University, Shaoguan 512026, China
| |
Collapse
|
29
|
Annexin A6 regulates catabolic events in articular chondrocytes via the modulation of NF-κB and Wnt/ß-catenin signaling. PLoS One 2018; 13:e0197690. [PMID: 29771996 PMCID: PMC5957413 DOI: 10.1371/journal.pone.0197690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
Annexin A6 (AnxA6) is expressed in articular chondrocytes at levels higher than in other mesenchymal cell types. However, the role of AnxA6 in articular chondrocytes is not known. Here we show that complete lack of AnxA6 functions resulted in increased ß-catenin activation in Wnt3a-treated murine articular chondrocytes, whereas AnxA6 expressing articular chondrocytes showed decreased ß-catenin activation. High expression of AnxA6 in human articular chondrocytes showed the highest inhibition of Wnt/ß-catenin signaling. Inhibition of Wnt/ß-catenin signaling activity by AnxA6 together with cytosolic Ca2+ was achieved by interfering with the plasma membrane association of the Wnt signaling complex. AnxA6 also affected the cross-talk between Wnt/ß-catenin signaling and NF-κB signaling by decreasing ß-catenin activity and increasing NF-κB activity in Wnt3a-, interleukin-1beta (IL-1ß)-, and combined Wnt3a/IL-1ß-treated cells. Wnt3a treatment increased the mRNA levels of catabolic markers (cyclooxygenase-2, interleukin-6, inducible nitric oxide synthase) to a much lesser degree than IL-1ß treatment in human articular chondrocytes, and decreased the mRNA levels of matrix metalloproteinase-13 (MMP-13) and articular cartilage markers (aggrecan, type II collagen). Furthermore, Wnt3a decreased the mRNA levels of catabolic markers and MMP-13 in IL-1ß-treated human articular chondrocytes. High expression of AnxA6 resulted in decreased mRNA levels of catabolic markers, and increased MMP-13 and articular cartilage marker mRNA levels in Wnt3a-treated human articular chondrocytes, whereas leading to increased mRNA levels of catabolic markers and MMP-13 in human articular chondrocytes treated with IL-1ß, or combined Wnt3a and IL-1ß. Our findings define a novel role for AnxA6 in articular chondrocytes via its modulation of Wnt/ß-catenin and NF-κB signaling activities and the cross-talk between these two signaling pathways.
Collapse
|
30
|
Song JL, Li DL, Fang H, Cai DZ. Intraperitoneal injection of thalidomide alleviates early osteoarthritis development by suppressing vascular endothelial growth factor expression in mice. Mol Med Rep 2018; 18:571-579. [PMID: 29750304 DOI: 10.3892/mmr.2018.8980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/30/2018] [Indexed: 11/05/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is expressed in articular cartilage and increases in expression levels have been associated with the progression of osteoarthritis (OA). Thalidomide is a drug that has been reported to inhibit angiogenesis and reduce VEGF production by downregulating VEGF expression. The objective of the present study was to determine whether intraperitoneal administration of thalidomide may attenuate early OA development in mice. Male C57BL/6 mice (10‑weeks‑old) were randomly assigned into the destabilization of the medial meniscus (Dmm) with thalidomide treatment (Dmm+Th), Dmm and Sham groups equally. An OA model was induced surgically in Dmm+Th and Dmm groups, and mice of the Dmm+Th group were subsequently treated with an intraperitoneal injection of thalidomide (200 mg/kg/day). At 2 and 4 weeks following surgery, the pathological alterations in cartilage samples were assessed qualitatively by hematoxylin and eosin staining and Safranin O/Fast green staining, and quantitatively by the Osteoarthritis Research Society International scoring system. The mRNA expression levels of matrix metalloproteinase‑13 (MMP‑13) and VEGF were measured by reverse transcription‑quantitative polymerase chain reaction. The protein expression levels of MMP‑13 and VEGF were detected by immunofluorescence and immunohistochemistry, respectively. The production of VEGF in serum was evaluated via an ELISA assay. Pathological scores were significantly higher in the Dmm and the Dmm+Th groups than those in the Sham group; however, the Dmm+Th group exhibited markedly less severe pathological changes compared with the Dmm group. Compared with the Sham group, the mRNA and protein expression levels of VEGF and MMP‑13 in the Dmm and the Dmm+Th groups were significantly increased. The Dmm+Th group exhibited significantly decreased expression levels of VEGF and MMP‑13, as well as significantly decreased serum VEGF concentration compared with the Dmm group. Thus, the results of the present study demonstrated that intraperitoneal administration of thalidomide may alleviate the development of early OA by suppressing VEGF expression in mice and may have potential as a novel therapy for the treatment of OA.
Collapse
Affiliation(s)
- Jia Lin Song
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - De Long Li
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Hang Fang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Dao Zhang Cai
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
31
|
Wang Q, Tan Q, Xu W, Qi H, Chen D, Zhou S, Ni Z, Kuang L, Guo J, Huang J, Wang X, Wang Z, Su N, Chen L, Chen B, Jiang W, Gao Y, Chen H, Du X, Xie Y, Chen L. Cartilage-specific deletion of Alk5 gene results in a progressive osteoarthritis-like phenotype in mice. Osteoarthritis Cartilage 2017; 25:1868-1879. [PMID: 28716756 PMCID: PMC5694025 DOI: 10.1016/j.joca.2017.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Previous studies have shown that Transforming growth factor-β (TGF-β)/TGFβRII-Smad3 signaling is involved in articular cartilage homeostasis. However, the role of TGF-β/ALK5 signaling in articular cartilage homeostasis has not been fully defined. In this study, a combination of in vitro and in vivo approaches was used to elucidate the role of ALK5 signaling in articular cartilage homeostasis and the development of osteoarthritis (OA). DESIGN Mice with inducible cartilage-specific deletion of Alk5 were generated to assess the role of ALK5 in OA development. Alterations in cartilage structure were evaluated histologically. The expressions of genes associated with articular cartilage homeostasis and TGF-β signaling were analyzed by qRT-PCR, western blotting and immunohistochemistry. The chondrocyte apoptosis was detected by TUNEL staining and immunohistochemistry. In addition, the molecular mechanism underlying the effects of TGF-β/ALK5 signaling on articular cartilage homeostasis was explored by analyzing the TGF-β/ALK5 signaling-induced expression of proteoglycan 4 (PRG4) using specific inhibitors. RESULTS Postnatal cartilage-specific deletion of Alk5 induced an OA-like phenotype with degradation of articular cartilage, synovial hyperplasia, osteophyte formation, subchondral sclerosis, as well as enhanced chondrocyte apoptosis, overproduction of catabolic factors, and decreased expressions of anabolic factors in chondrocytes. In addition, the expressions of PRG4 mRNA and protein were decreased in Alk5 conditional knockout mice. Furthermore, our results showed, for the first time, that TGF-β/ALK5 signaling regulated PRG4 expression partially through the protein kinase A (PKA)-CREB signaling pathway. CONCLUSIONS TGF-β/ALK5 signaling maintains articular cartilage homeostasis, in part, by upregulating PRG4 expression through the PKA-CREB signaling pathway in articular chondrocytes.
Collapse
Affiliation(s)
- Q. Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Q.Y. Tan
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - W. Xu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - H.B. Qi
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - D. Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - S. Zhou
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Z.H. Ni
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - L. Kuang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - J.Y. Guo
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - J.L. Huang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - X.X. Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Z.Q. Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - N. Su
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - L. Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - B. Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - W.L. Jiang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Y. Gao
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - H.G. Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - X.L. Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China,Address correspondence and reprint requests to: X.L. Du, Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China. Fax: 86-23-68702991.
| | - Y.L. Xie
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China,Address correspondence and reprint requests to: Y.L. Xie, Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China. Fax: 86-23-68702991.
| | - L. Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China,Address correspondence and reprint requests to: L. Chen, Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China. Fax: 86-23-68702991.
| |
Collapse
|
32
|
Zhang H, Wang H, Zeng C, Yan B, Ouyang J, Liu X, Sun Q, Zhao C, Fang H, Pan J, Xie D, Yang J, Zhang T, Bai X, Cai D. mTORC1 activation downregulates FGFR3 and PTH/PTHrP receptor in articular chondrocytes to initiate osteoarthritis. Osteoarthritis Cartilage 2017; 25:952-963. [PMID: 28043938 DOI: 10.1016/j.joca.2016.12.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/09/2016] [Accepted: 12/21/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Articular chondrocyte activation, involving aberrant proliferation and prehypertrophic differentiation, is essential for osteoarthritis (OA) initiation and progression. Disruption of mechanistic target of rapamycin complex 1 (mTORC1) promotes chondrocyte autophagy and survival, and decreases the severity of experimental OA. However, the role of cartilage mTORC1 activation in OA initiation is unknown. In this study, we elucidated the specific role of mTORC1 activation in OA initiation, and identify the underlying mechanisms. METHOD Expression of mTORC1 in articular cartilage of OA patients and OA mice was assessed by immunostaining. Cartilage-specific tuberous sclerosis complex 1 (Tsc1, mTORC1 upstream inhibitor) knockout (TSC1CKO) and inducible Tsc1 KO (TSC1CKOER) mice were generated. The functional effects of mTORC1 in OA initiation and development on its downstream targets were examined by immunostaining, western blotting and qPCR. RESULTS Articular chondrocyte mTORC1 was activated in early-stage OA and in aged mice. TSC1CKO mice exhibited spontaneous OA, and TSC1CKOER mice (from 2 months) exhibited accelerated age-related and DMM-induced OA phenotypes, with aberrant chondrocyte proliferation and hypertrophic differentiation. This was associated with hyperactivation of mTORC1 and dramatic downregulation of FGFR3 and PPR, two receptors critical for preventing chondrocyte proliferation and differentiation. Rapamycin treatment reversed these phenotypes in KO mice. Furthermore, in vitro rescue experiments demonstrated that p73 and ERK1/2 may mediate the negative regulation of FGFR3 and PPR by mTORC1. CONCLUSION mTORC1 activation stimulates articular chondrocyte proliferation and differentiation to initiate OA, in part by downregulating FGFR3 and PPR.
Collapse
Affiliation(s)
- H Zhang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - H Wang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Medical College, Haikou, China.
| | - C Zeng
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - B Yan
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - J Ouyang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - X Liu
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Q Sun
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - C Zhao
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - H Fang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - J Pan
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - D Xie
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - J Yang
- Academy of Orthopedics, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China.
| | - T Zhang
- Academy of Orthopedics, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China.
| | - X Bai
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - D Cai
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Wang H, Zhang H, Sun Q, Wang Y, Yang J, Yang J, Zhang T, Luo S, Wang L, Jiang Y, Zeng C, Cai D, Bai X. Intra-articular Delivery of Antago-miR-483-5p Inhibits Osteoarthritis by Modulating Matrilin 3 and Tissue Inhibitor of Metalloproteinase 2. Mol Ther 2017; 25:715-727. [PMID: 28139355 DOI: 10.1016/j.ymthe.2016.12.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/12/2016] [Accepted: 12/25/2016] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) are emerging as important regulators in osteoarthritis (OA) pathogenesis. In our study, a real-time PCR assay revealed that miR-483-5p was upregulated in articular cartilage from OA patients and experimental OA mice induced by destabilization of the medial meniscus compared to their controls. Overexpression of miR-483-5p by intra-articular injection of lentivirus LV3-miR-483-5p significantly enhanced the severity of experimental OA. Consequently, we synthesized antago-miR-483-5p to silence the endogenous miR-483-5p and delivered it intra-articularly, which revealed that antago-miR-483-5p delayed the progression of experimental OA. To investigate the functional mechanism of miR-483-5p in OA development, we generated doxycycline-inducible miR-483 transgenic (TG483) mice. TG483 mice exhibited significant acceleration and increased severity of OA, and age-related OA occurred with higher incidence and greater severity in TG483 mice compared with their controls. Furthermore, our results revealed miR-483-5p directly targeted to the cartilage matrix protein matrilin 3 (Matn3) and tissue inhibitor of metalloproteinase 2 (Timp2) to stimulate chondrocyte hypertrophy, extracellular matrix degradation, and cartilage angiogenesis, and it consequently initiated and accelerated the development of OA. In conclusion, our findings reveal an miRNA functional pathway important for OA development. Targeting of miR-483-5p by intra-articular injection of antago-miR-483-5p represents an approach that could prevent the onset of OA and delay its progression.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Tropical Diseases and Translational Medicine of The Ministry of Education, Hainan Medical College, Haikou 571199, China
| | - Haiyan Zhang
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Qiuyi Sun
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Yun Wang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Jun Yang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Yang
- Department of Orthopedics, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010, China
| | - Tao Zhang
- Department of Orthopedics, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010, China
| | - Shenqiu Luo
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Liping Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chun Zeng
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China.
| | - Daozhang Cai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China.
| | - Xiaochun Bai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|