1
|
Marcos E, Tsujimoto S, Mattia M, Genovesio A. A Network Activity Reconfiguration Underlies the Transition from Goal to Action. Cell Rep 2020; 27:2909-2920.e4. [PMID: 31167137 DOI: 10.1016/j.celrep.2019.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 03/10/2018] [Accepted: 05/03/2019] [Indexed: 11/18/2022] Open
Abstract
Neurons in prefrontal cortex (PF) represent mnemonic information about current goals until the action can be selected and executed. However, the neuronal dynamics underlying the transition from goal into specific actions are poorly understood. Here, we show that the goal-coding PF network is dynamically reconfigured from mnemonic to action selection states and that such reconfiguration is mediated by cell assemblies with heterogeneous excitability. We recorded neuronal activity from PF while monkeys selected their actions on the basis of memorized goals. Many PF neurons encoded the goal, but only a minority of them did so across both memory retention and action selection stages. Interestingly, about half of this minority of neurons switched their goal preference across the goal-action transition. Our computational model led us to propose a PF network composed of heterogeneous cell assemblies with single-state and bistable local dynamics able to produce both dynamical stability and input susceptibility simultaneously.
Collapse
Affiliation(s)
- Encarni Marcos
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, San Juan de Alicante, Spain
| | - Satoshi Tsujimoto
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan; The Nielsen Company Pte. Ltd., Singapore, Singapore
| | | | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Fascianelli V, Tsujimoto S, Marcos E, Genovesio A. Autocorrelation Structure in the Macaque Dorsolateral, But not Orbital or Polar, Prefrontal Cortex Predicts Response-Coding Strength in a Visually Cued Strategy Task. Cereb Cortex 2020; 29:230-241. [PMID: 29228110 DOI: 10.1093/cercor/bhx321] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/05/2017] [Indexed: 11/14/2022] Open
Abstract
In previous work, we studied the activity of neurons in the dorsolateral (PFdl), orbital (PFo), and polar (PFp) prefrontal cortex while monkeys performed a strategy task with 2 spatial goals. A cue instructed 1 of 2 strategies in each trial: stay with the previous goal or shift to the alternative goal. Each trial started with a fixation period, followed by a cue. Subsequently, a delay period was followed by a "go" signal that instructed the monkeys to choose one goal. After each choice, feedback was provided. In this study, we focused on the temporal receptive fields of the neurons, as measured by the decay in autocorrelation (time constant) during the fixation period, and examined the relationship with response and strategy coding. The temporal receptive field in PFdl correlated with the response-related but not with the strategy-related modulation in the delay and the feedback periods: neurons with longer time constants in PFdl tended to show stronger and more prolonged response coding. No such correlation was found in PFp or PFo. These findings demonstrate that the temporal specialization of neurons for temporally extended computations is predictive of response coding, and neurons in PFdl, but not PFp or PFo, develop such predictive properties.
Collapse
Affiliation(s)
- Valeria Fascianelli
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Satoshi Tsujimoto
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan.,The Nielsen Company Singapore Pte Ltd, Singapore, Singapore
| | - Encarni Marcos
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
3
|
Mione V, Tsujimoto S, Genovesio A. Neural Correlations Underlying Self-Generated Decision in the Frontal Pole Cortex during a Cued Strategy Task. Neuroscience 2019; 404:519-528. [PMID: 30811970 DOI: 10.1016/j.neuroscience.2019.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/15/2019] [Indexed: 11/30/2022]
Abstract
We have previously shown how the Frontal Pole cortex (FPC) neurons play a unique role in both the monitoring and evaluating of self-generated decisions during feedback in a visually cued strategy task. For each trial of this task, a cue instructed one of two strategies: to either stay with the previous goal or shift to the alternative goal. Each cue was followed by a delay period, then each choice was followed by a feedback. FPC neurons show goal-selective activity exclusively during the feedback period. Here, we studied how neural correlation dynamically changes, along with a trial in FPC. We classified the cells as goal-selective and not goal-selective (NS) and analyzed the time-course of the cross-correlations in 76 pairs of neurons from each group. We compared a control epoch with the feedback epoch and we found higher correlations in the latter one between goal-selective neurons than between NS neurons, in which the correlated activity dropped during feedback. This supports the involvement of goal-selective cells in the evaluation of self-generated decisions at the feedback time. We also observed a dynamic change of the correlations in time, indicating that the connections among cell-assemblies were transient, changing between internal states at the feedback time. These results indicate that the changing of the pattern of neural correlations can underlie the flexibility of the prefrontal computations.
Collapse
Affiliation(s)
- Valentina Mione
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Satoshi Tsujimoto
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan; The Nielsen Company Singapore Pte Ltd, Singapore
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Marcos E, Tsujimoto S, Genovesio A. Independent coding of absolute duration and distance magnitudes in the prefrontal cortex. J Neurophysiol 2016; 117:195-203. [PMID: 27760814 DOI: 10.1152/jn.00245.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/15/2016] [Indexed: 11/22/2022] Open
Abstract
The estimation of space and time can interfere with each other, and neuroimaging studies have shown overlapping activation in the parietal and prefrontal cortical areas. We used duration and distance discrimination tasks to determine whether space and time share resources in prefrontal cortex (PF) neurons. Monkeys were required to report which of two stimuli, a red circle or blue square, presented sequentially, were longer and farther, respectively, in the duration and distance tasks. In a previous study, we showed that relative duration and distance are coded by different populations of neurons and that the only common representation is related to goal coding. Here, we examined the coding of absolute duration and distance. Our results support a model of independent coding of absolute duration and distance metrics by demonstrating that not only relative magnitude but also absolute magnitude are independently coded in the PF. NEW & NOTEWORTHY Human behavioral studies have shown that spatial and duration judgments can interfere with each other. We investigated the neural representation of such magnitudes in the prefrontal cortex. We found that the two magnitudes are independently coded by prefrontal neurons. We suggest that the interference among magnitude judgments might depend on the goal rather than the perceptual resource sharing.
Collapse
Affiliation(s)
- Encarni Marcos
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Satoshi Tsujimoto
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan; and.,Nielsen Consumer Neuroscience, Tokyo, Japan
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy;
| |
Collapse
|
5
|
Gray DT, Smith AC, Burke SN, Gazzaley A, Barnes CA. Attentional updating and monitoring and affective shifting are impacted independently by aging in macaque monkeys. Behav Brain Res 2016; 322:329-338. [PMID: 27368416 DOI: 10.1016/j.bbr.2016.06.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/02/2016] [Accepted: 06/27/2016] [Indexed: 11/29/2022]
Abstract
One hallmark of the normal cognitive aging process involves alterations in executive function. Executive function can be divided into at least three separable components, including set shifting, attentional updating and monitoring, and inhibition of prepotent responses. The ability to study the neural basis of cognitive aging has been enriched by the use of animal models such as the macaque monkey. In aged macaques, changes in attentional updating and monitoring systems are poorly understood compared to changes in shifting and inhibition. A partial explanation for this is the fact that the tasks designed to study executive function in aged monkeys, to date, primarily have probed shifting and inhibition processes. Here we examine how aging impacts attentional updating and monitoring processes in monkeys using an interference task designed after a paradigm used to examine multi-tasking in older humans. Young and aged macaque monkeys were tested on this interference task as well as on an object reversal learning task to study these processes in the same animals. Relative to the young monkeys, aged animals were impaired on both tasks. Proactive and retroactive interference did not differ between age groups on an array of 40 object pairs presented each day in the object reversal learning task. The levels of performance on the interference task were not correlated with levels of performance in the object reversal task. These results suggest that attentional updating and monitoring and affective shifting are separable functions in the macaque, and that normal aging affects these mental operations independently.
Collapse
Affiliation(s)
- Daniel T Gray
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724, USA; Division of Neural System, Memory & Aging, University of Arizona, Tucson, AZ 85724, USA
| | - Anne C Smith
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724, USA
| | - Sara N Burke
- Evelyn F. McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Adam Gazzaley
- Department of Neurology and Psychiatry, University of California, San Francisco, CA 94158, USA
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724, USA; Division of Neural System, Memory & Aging, University of Arizona, Tucson, AZ 85724, USA; Department of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
6
|
Genovesio A, Seitz LK, Tsujimoto S, Wise SP. Context-Dependent Duration Signals in the Primate Prefrontal Cortex. Cereb Cortex 2015. [PMID: 26209845 DOI: 10.1093/cercor/bhv156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The activity of some prefrontal (PF) cortex neurons distinguishes short from long time intervals. Here, we examined whether this property reflected a general timing mechanism or one dependent on behavioral context. In one task, monkeys discriminated the relative duration of 2 stimuli; in the other, they discriminated the relative distance of 2 stimuli from a fixed reference point. Both tasks had a pre-cue period (interval 1) and a delay period (interval 2) with no discriminant stimulus. Interval 1 elapsed before the presentation of the first discriminant stimulus, and interval 2 began after that stimulus. Both intervals had durations of either 400 or 800 ms. Most PF neurons distinguished short from long durations in one task or interval, but not in the others. When neurons did signal something about duration for both intervals, they did so in an uncorrelated or weakly correlated manner. These results demonstrate a high degree of context dependency in PF time processing. The PF, therefore, does not appear to signal durations abstractedly, as would be expected of a general temporal encoder, but instead does so in a highly context-dependent manner, both within and between tasks.
Collapse
Affiliation(s)
- Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Lucia K Seitz
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Satoshi Tsujimoto
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan Nielsen Neuro, Tokyo, Japan
| | - Steven P Wise
- Olschefskie Institute for the Neurobiology of Knowledge, Potomac, MD 20854, USA Edmond and Lily Safra International Institute of Neurosciences of Natal, Natal, Brazil
| |
Collapse
|
7
|
Genovesio A, Cirillo R, Tsujimoto S, Mohammad Abdellatif S, Wise SP. Automatic comparison of stimulus durations in the primate prefrontal cortex: the neural basis of across-task interference. J Neurophysiol 2015; 114:48-56. [PMID: 25904705 DOI: 10.1152/jn.00057.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022] Open
Abstract
Rhesus monkeys performed two tasks, both requiring a choice between a red square and a blue circle. In the duration task, the two stimuli appeared sequentially on each trial, for varying durations, and, later, during the choice phase of the task, the monkeys needed to choose the one that had lasted longer. In the matching-to-sample task, one of the two stimuli appeared twice as a sample, with durations matching those in the duration task, and the monkey needed to choose that stimulus during the choice phase. Although stimulus duration was irrelevant in the matching-to-sample task, the monkeys made twice as many errors when the second stimulus was shorter. This across-task interference supports an order-dependent model of the monkeys' choice and reveals something about their strategy in the duration task. The monkeys tended to choose the second stimulus when its duration exceeded the first and to choose the alternative stimulus otherwise. For the duration task, this strategy obviated the need to store stimulus-duration conjunctions for both stimuli, but it generated errors on the matching-to-sample task. We examined duration coding in prefrontal neurons and confirmed that a population of cells encoded relative duration during the matching-to-sample task, as expected from the order-dependent errors.
Collapse
Affiliation(s)
- Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy;
| | - Rossella Cirillo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Satoshi Tsujimoto
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan; Nielsen Neuro, Tokyo, Japan; and
| | | | - Steven P Wise
- Olschefskie Institute for the Neurobiology of Knowledge, Potomac, Maryland and Edmond and Lily Safra International Institute of Neurosciences of Natal, Natal, Brazil
| |
Collapse
|