1
|
Tanaka D, Yaguchi H, Yoshizaki K, Kudo A, Mori F, Nomura T, Pan J, Miki Y, Takahashi H, Hara T, Wakabayashi K, Yabe I. Behavioral and histological analyses of the mouse Bassoon p.P3882A mutation corresponding to the human BSN p.P3866A mutation. Front Neurosci 2024; 18:1414145. [PMID: 39130376 PMCID: PMC11310129 DOI: 10.3389/fnins.2024.1414145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Tauopathy is known to be a major pathognomonic finding in important neurodegenerative diseases such as progressive supranuclear palsy (PSP) and corticobasal degeneration. However, the mechanism by which tauopathy is triggered remains to be elucidated. We previously identified the point mutation c.11596C > G, p.Pro3866Ala in the Bassoon gene (BSN) in a Japanese family with PSP-like syndrome. We showed that mutated BSN may have been involved in its own insolubilization and tau accumulation. Furthermore, BSN mutations have also been related to various neurological diseases. In order to further investigate the pathophysiology of BSN mutation in detail, it is essential to study it in mouse models. We generated a mouse model with the mouse Bassoon p.P3882A mutation, which corresponds to the human BSN p.P3866A mutation, knock-in (KI) and we performed systematic behavioral and histological analyses. Behavioral analyses revealed impaired working memory in a Y-maze test at 3 months of age and decreased locomotor activity in the home cage at 3 and 12 months of age in KI mice compared to those in wild-type mice. Although no obvious structural abnormalities were observed at 3 months of age, immunohistochemical studies showed elevation of Bsn immunoreactivity in the hippocampus and neuronal loss without tau accumulation in the substantia nigra at 12 months of age in KI mice. Although our mice model did not show progressive cognitive dysfunction and locomotor disorder like PSP-like syndrome, dopaminergic neuronal loss was observed in the substantia nigra in 12-month-old KI mice. It is possible that BSN mutation may result in dopaminergic neuronal loss without locomotor symptoms due to the early disease stage. Thus, further clinical course can induce cognitive dysfunction and locomotor symptoms.
Collapse
Affiliation(s)
- Daiki Tanaka
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Yaguchi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kaichi Yoshizaki
- Department of Disease Model, Aichi Developmental Disability Center, Kasugai, Japan
- Integrated Analysis of Bioresource and Health Care, Future Medical Sciences, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiko Kudo
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Taichi Nomura
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing Pan
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuo Miki
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Taichi Hara
- Laboratory of Food and Life Science, Faculty of Human Sciences, Waseda University, Tokyo, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Niinuma S, Wake Y, Nakagawa Y, Kaneko T. Importance of nuclear localization signal-fused Cas9 in the production of genome-edited mice via embryo electroporation. Biochem Biophys Res Commun 2023; 685:149140. [PMID: 37918326 DOI: 10.1016/j.bbrc.2023.149140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Previously, to generate genome-edited animals by introducing CRISPR-associated protein 9 (Cas9) into embryos, we developed the Technique for Animal Knockout system by Electroporation (TAKE). Additionally, by fluorescently labeling Cas9, we successfully visualized the Cas9 introduced into the pronuclei of embryos; however, whether Cas9 was introduced directly into the pronuclei by electric pulse or transferred from the cytoplasm by nuclear localization signal (NLS) remained unknown. Herein, we evaluated the localization of Cas9 with (Cas9-NLS) or without NLS (Cas9-noNLS) in mice embryos following electroporation by fusing them with GFP. Furthermore, we visually studied their effects on genome-editing rates in offspring by targeting tyrosinase gene. Fluorescence intensity in pronuclei of Cas9-NLS-electroporated embryos and genome-editing rates of offspring were significantly higher than those of Cas9-noNLS-electroporated embryos. Furthermore, fluorescence in Cas9-NLS-electroporated embryos in which pronuclei had not yet appeared 2.5 h after insemination was observed in the pronuclei of embryos appearing 3.5 h after electroporation. We demonstrated the effective transportation of Cas9 from the cytoplasm to pronuclei by the NLS following TAKE, which resulted in increased genome-editing rates in offspring. The TAKE along with fluorescently labeled nucleases can be used to verify nuclease delivery into individual embryos prior to embryo transfer for efficiently producing genome-edited animals.
Collapse
Affiliation(s)
- Sakura Niinuma
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan
| | - Yui Wake
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan
| | - Yuki Nakagawa
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan
| | - Takehito Kaneko
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan; Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan.
| |
Collapse
|
3
|
Wake Y, Endo M, Tsunoda S, Tawara H, Abe H, Nakagawa Y, Kaneko T. Successful induction of pseudopregnancy using sonic vibration in mice. Sci Rep 2023; 13:3604. [PMID: 36869082 PMCID: PMC9984469 DOI: 10.1038/s41598-023-30774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Embryo transfer (ET) is an essential reproductive technology for the production of new animal strains and maintenance of genetic resources. We developed a method, named Easy-ET, to induce pseudopregnancy in female rats by artificial stimulation using sonic vibration instead of mating with vasectomized males. This study examined the application of this method for the induction of pseudopregnancy in mice. Offspring were obtained from two-cell embryos transferred into females with pseudopregnancy induced using sonic vibration in proestrus on the day before embryo transfer. Furthermore, high developmental rates of offspring were observed when pronuclear and two-cell embryos were transferred to females in estrus that were stimulated on the day of embryo transfer. Genome-edited mice were also obtained using frozen-warmed pronuclear embryos with clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) nucleases introduced using the technique for animal knockout system by electroporation (TAKE) method, which were transferred to females with pseudopregnancy induced on the day of embryo transfer. This study demonstrated that induction of pseudopregnancy by sonic vibration was also possible in mice.
Collapse
Affiliation(s)
- Yui Wake
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan
| | - Marina Endo
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan
| | | | | | - Hisayuki Abe
- Institute for Animal Reproduction, Ibaraki, 300-0134, Japan
| | - Yuki Nakagawa
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan
| | - Takehito Kaneko
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan.
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan.
| |
Collapse
|
4
|
Kaneko T. Genome Editing of Rat. Methods Mol Biol 2023; 2637:223-231. [PMID: 36773150 DOI: 10.1007/978-1-0716-3016-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Many genetically engineered rat strains have been produced by the development of genome editing technology, although it used to be technical difficulty and low production efficiency. Knockout and knock-in strains can be simple and quick produced using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Presently, genome edited strains have been produced by microinjection and a new electroporation method named technique for animal knockout system by electroporation (TAKE). This chapter presents the latest protocols for producing genome edited rats.
Collapse
Affiliation(s)
- Takehito Kaneko
- Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
5
|
Abstract
Many genome-edited mouse and rat strains have been produced using engineered endonucleases, including zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Especially, CRISPR-Cas9 is powerful tool that can be easy, rapid, and high-efficiency-produced new genome-edited strains. Furthermore, new technique, Technique for Animal Knockout system by Electroporation (TAKE), efficiently accelerate production of new strains by direct nuclease introduction into intact embryos using electroporation. This chapter presents a latest technical information in the production of genome-edited mouse and rat by TAKE method.
Collapse
Affiliation(s)
- Takehito Kaneko
- Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
6
|
Mahmud S, Biswas S, Afrose S, Mita MA, Hasan MR, Shimu MSS, Paul GK, Chung S, Saleh MA, Alshehri S, Ghoneim MM, Alruwaily M, Kim B. Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders. Curr Issues Mol Biol 2022; 44:1127-1148. [PMID: 35723297 PMCID: PMC8947152 DOI: 10.3390/cimb44030074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/06/2022] Open
Abstract
Mitochondria are major contributors to ATP synthesis, generating more than 90% of the total cellular energy production through oxidative phosphorylation (OXPHOS): metabolite oxidation, such as the β-oxidation of fatty acids, and the Krebs's cycle. OXPHOS inadequacy due to large genetic lesions in mitochondrial as well as nuclear genes and homo- or heteroplasmic point mutations in mitochondrially encoded genes is a characteristic of heterogeneous, maternally inherited genetic disorders known as mitochondrial disorders that affect multisystemic tissues and organs with high energy requirements, resulting in various signs and symptoms. Several traditional diagnostic approaches, including magnetic resonance imaging of the brain, cardiac testing, biochemical screening, variable heteroplasmy genetic testing, identifying clinical features, and skeletal muscle biopsies, are associated with increased risks, high costs, a high degree of false-positive or false-negative results, or a lack of precision, which limits their diagnostic abilities for mitochondrial disorders. Variable heteroplasmy levels, mtDNA depletion, and the identification of pathogenic variants can be detected through genetic sequencing, including the gold standard Sanger sequencing. However, sequencing can be time consuming, and Sanger sequencing can result in the missed recognition of larger structural variations such as CNVs or copy-number variations. Although each sequencing method has its own limitations, genetic sequencing can be an alternative to traditional diagnostic methods. The ever-growing roster of possible mutations has led to the development of next-generation sequencing (NGS). The enhancement of NGS methods can offer a precise diagnosis of the mitochondrial disorder within a short period at a reasonable expense for both research and clinical applications.
Collapse
Affiliation(s)
- Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mst. Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Gobindo Kumar Paul
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Momammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Maha Alruwaily
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
7
|
Taketsuru H, Tsukada YI, Kaneko T. Survivability and subsequent development of vitrified early-stage mouse embryos after warming at different temperatures. Biochem Biophys Res Commun 2022; 591:50-53. [PMID: 34999253 DOI: 10.1016/j.bbrc.2021.12.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/24/2021] [Indexed: 11/15/2022]
Abstract
Cryopreservation of embryos is a useful method for stably preserving various strains for a long time, and the cryopreserved embryos can be used at any time by simple warming. However, the viability of cryopreserved embryos, particularly vitrification at an early stage, is low compared to that of fresh embryos. As the warming process during vitrification is known to affect the survivability and subsequent development of embryos, the present study aimed to examine the viability and subsequent development of vitrified early-stage mouse embryos after warming at different temperatures. The survival rate of pronuclear and 2-cell stage embryos warmed at 60 °C (97% and 88%, respectively) was significantly higher than that of the embryos warmed at 37 °C (46% and 48%, respectively). The pronuclear and 2-cell stage embryos warmed at 60 °C (86% and 100%) showed better development to the blastocyst stage than the embryos warmed at 37 °C (72% and 84%, respectively). The development of offspring of the surviving embryos was similar at both the warming temperatures. These results showed that the survivability and subsequent development of vitrified early-stage mouse embryos were obviously increased upon rapid warming. This improved warming process could be helpful for the maintenance and reproduction of genetic resources.
Collapse
Affiliation(s)
- Hiroaki Taketsuru
- Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yu-Ichi Tsukada
- Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takehito Kaneko
- Division of Science and Engineering Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan; Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan.
| |
Collapse
|
8
|
Successful pseudopregnancy of rats by short period artificial stimulation using sonic vibration. Sci Rep 2022; 12:1187. [PMID: 35075219 PMCID: PMC8786822 DOI: 10.1038/s41598-022-05293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/04/2022] [Indexed: 11/09/2022] Open
Abstract
Psuedopregnancy for embryo transfer (ET) is usually induced in rats by mating with vasectomized males. Previously, we successfully induced pseudopregnancy using sonic vibration instead (Easy-ET method). The transferred embryos developed normally. Conventionally, stimulation is performed 7 × 30 s with 5 min intervals at the day before ET. However, this protocol is time-consuming because it imitates natural mating behavior. Here, we investigated pseudopregnancy induction with shorter stimulation times. Stimulation was performed 2 × 30 s, with 30 s intervals at the proestrus stage at the day before ET. Of the transferred pronuclear or two-cell embryos, 43% or 62% developed normally, respectively. Furthermore, 67% or 68% of transferred pronuclear or two-cell embryos in rats at estrus stage stimulated on the day of ET developed normally, respectively. Pseudopregnancy was successfully induced with shorter stimulation. Furthermore, this protocol may be used to perform a single-day stimulation and ET operation at the estrus stage.
Collapse
|
9
|
Wake Y, Kaneko T. Production of genome-edited mice by visualization of nucleases introduced into the embryos using electroporation. J Reprod Dev 2020; 66:469-473. [PMID: 32713893 PMCID: PMC7593630 DOI: 10.1262/jrd.2020-068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/12/2020] [Indexed: 12/26/2022] Open
Abstract
Genome editing technology contributes to the quick and highly efficient production of genetically engineered animals. These animals are helpful in clarifying the mechanism of human disease. Recently, a new electroporation technique (TAKE: Technique for animal knockout system by electroporation) was developed to produce genome-edited animals by introducing nucleases into intact embryos using electroporation instead of the microinjection method. The aim of this study was to increase the efficiency of production of genome-edited animals using the TAKE method. In the conventional protocol, it was difficult to confirm the introduction of nucleases into embryos and energization during operation. Using only embryos that introduced nucleases for embryo transfer, it will lead to increased efficiency in the production of genome-edited animals. This study examined the visualization in the introduction of nucleases into the embryos by using nucleases fluorescent labeled with ATTO-550. The embryos were transfected with Cas9 protein and fluorescent labeled dual guide RNA (mixture with crRNA and tracrRNA with ATTO-550) targeted tyrosinase gene by the TAKE method. All embryos that survived after electroporation showed fluorescence. Of these embryos with fluorescence, 43.7% developed to morphologically normal offspring. In addition, 91.7% of offspring were edited by the tyrosinase gene. This study is the first to demonstrate that the introduction of nucleases into embryos by the TAKE method could be visualized using fluorescent-labeled nucleases. This improved TAKE method can be used to produce genome-edited animals and confirm energization during operation.
Collapse
Affiliation(s)
- Yui Wake
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate 020-8551, Japan
| | - Takehito Kaneko
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate 020-8551, Japan
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate 020-8551, Japan
| |
Collapse
|
10
|
Kaneko T, Tanaka S. Improvement of genome editing by electroporation using embryos artificially removed cumulus cells in the oviducts. Biochem Biophys Res Commun 2020; 527:1039-1042. [PMID: 32439162 DOI: 10.1016/j.bbrc.2020.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 11/28/2022]
Abstract
Many genome-edited animals have been produced using the CRISPR/Cas system. Genome-edited strains were produced by introducing nucleases into pronuclear stage embryos. Recently, a new electroporation technique (TAKE: Technique for Animal Knockout system by Electroporation) was developed for the production of genome-edited animals by introducing nucleases into intact embryos using electroporation instead of the microinjection method. Furthermore, this method, which can introduce nucleases into intact embryos, enables genome editing of mouse embryos in the oviducts. However, the present protocol required improvements for low litter size and restriction of operation time. In this study, the influence on the development and genome editing of mouse embryos in the oviducts by electroporation and operation time was examined. The genome-editing rate was higher in the embryos electroporated at 16:00-17:00 (PM) (54%) on the following day of natural mating compared to that of embryos at 10:00-11:00 (AM) (27%). The embryos at AM formed a complex with cumulus cells, and cumulus cells were freed from embryos by treatment with hyalronidase before electroporation. The results showed that the genome-editing rate was significantly increased in the embryos treated with hyalronidase at AM, because the cumulus cells surrounding the embryos interfered with the introduction of nucleases into embryos. This study demonstrated that it was possible to adjust the operation time for the introduction of nucleases into embryos in the oviducts by treatment with hyalronidase before electroporation. However, litter size and development of embryos after electroporation was quite low in all experiments (5-7) compared with the control without operation (11).
Collapse
Affiliation(s)
- Takehito Kaneko
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan; Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan.
| | - Shungo Tanaka
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan
| |
Collapse
|
11
|
Kaneko T, Endo M, Tsunoda S, Nakagawa Y, Abe H. Simple induction of pseudopregnancy by artificial stimulation using a sonic vibration in rats. Sci Rep 2020; 10:2729. [PMID: 32066799 PMCID: PMC7026161 DOI: 10.1038/s41598-020-59611-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/30/2020] [Indexed: 11/26/2022] Open
Abstract
Embryo transfer has been used as one of the essential reproductive technologies for production of new strains and maintenance of genetic resources in animals. Mating with vasectomised male rats is a requirement for inducing pseudopregnancy in female rats selected for embryo transfer. Although this procedure has been used routinely, large breeding space and high expenditure are required to maintain a sufficient number of females and vasectomised males. This study was performed to induce pseudopregnancy in females by artificial stimulation using sonic vibration instead of vasectomised males. The females continued to be in the dioestrus stage for at least 14 days after artificial stimulation was performed. Of fresh 2-cell embryos that transferred into the oviducts of females after artificial stimulation, 56% was implanted and 50% was developed to offspring. Approximately 46% of the frozen 2-cell embryos were implanted and 24% developed into offspring. Furthermore, 66% of the fresh pronuclear embryos were implanted and 60% developed into offspring. This study successfully induced pseudopregnancy in rat females by artificial stimulation using a sonic vibration. This method, ‘Easy-ET’, was useful for efficient production and maintenance of rat strains.
Collapse
Affiliation(s)
- Takehito Kaneko
- Division of Science and Engineering Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan. .,Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan.
| | - Marina Endo
- Division of Science and Engineering Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan
| | | | - Yuki Nakagawa
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan
| | - Hisayuki Abe
- Institute for Animal Reproduction, Ibaraki, 300-0134, Japan
| |
Collapse
|
12
|
Kaneko T, Nakagawa Y. Genome editing of rodents by electroporation of CRISPR/Cas9 into frozen-warmed pronuclear-stage embryos. Cryobiology 2020; 92:231-234. [PMID: 31987837 DOI: 10.1016/j.cryobiol.2020.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 01/18/2023]
Abstract
Genome edited animals can now be easily produced using the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9) system. Traditionally, these animals have been produced by the introduction of endonucleases into pronuclear-stage embryos. Recently, a novel electroporation method, the "Technique for Animal Knockout system by Electroporation (TAKE)," has been established as a simple and highly efficient tool to introduce endonucleases into embryos instead of methods such as microinjection. Use of frozen-warmed pronuclear-stage embryos in this method has further contributed to efficient production of genome edited animals. However, early developmental stage embryos, including pronuclear-stage embryos, especially those of rats, sometimes show low resistance to physical damage by vitrification and introduction of endonucleases during microinjection. In this study, we propose an ethanol-free, slow-freezing method to reduce physical damage to pronuclear-stage embryos followed by the TAKE method. All mouse and rat frozen embryos were survived after electroporation, and 18% and 100% of offspring were edited target gene, respectively. The resulting protocol is an efficient method for producing genome edited animals.
Collapse
Affiliation(s)
- Takehito Kaneko
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan; Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University, Iwate, 020-8551, Japan.
| | - Yuki Nakagawa
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan
| |
Collapse
|
13
|
Rapid and efficient production of genome-edited animals by electroporation into oocytes injected with frozen or freeze-dried sperm. Cryobiology 2019; 90:71-74. [DOI: 10.1016/j.cryobiol.2019.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
|
14
|
Tolerance to vitrification of rat embryos at various developmental stages. Cryobiology 2018; 84:1-3. [DOI: 10.1016/j.cryobiol.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 11/23/2022]
|
15
|
Kaneko T. Reproductive technologies for the generation and maintenance of valuable animal strains. J Reprod Dev 2018; 64:209-215. [PMID: 29657233 PMCID: PMC6021608 DOI: 10.1262/jrd.2018-035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many types of mutant and genetically engineered strains have been produced in various animal species. Their numbers have dramatically increased in recent years, with new strains being
rapidly produced using genome editing techniques. In the rat, it has been difficult to produce knockout and knock-in strains because the establishment of stem cells has been insufficient.
However, a large number of knockout and knock-in strains can currently be produced using genome editing techniques, including zinc-finger nuclease (ZFN), transcription activator-like
effector nuclease (TALEN), and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) system. Microinjection technique has also
contributed widely to the production of various kinds of genome edited animal strains. A novel electroporation method, the “Technique for Animal Knockout system by Electroporation (TAKE)”
method, is a simple and highly efficient tool that has accelerated the production of new strains. Gamete preservation is extremely useful for maintaining large numbers of these valuable
strains as genetic resources in the long term. These reproductive technologies, including microinjection, TAKE method, and gamete preservation, strongly support biomedical research and the
bio-resource banking of animal models. In this review, we introduce the latest reproductive technologies used for the production of genetically engineered animals, especially rats, using
genome editing techniques and the efficient maintenance of valuable strains as genetic resources. These technologies can also be applied to other laboratory animals, including mice, and
domestic and wild animal species.
Collapse
Affiliation(s)
- Takehito Kaneko
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate 020-8551, Japan.,Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate 020-8551, Japan.,Soft-Path Science and Engineering Research Center (SPERC), Iwate University, Iwate 020-8551, Japan
| |
Collapse
|
16
|
Wu Y, Luna MJ, Bonilla LS, Ryba NJP, Pickel JM. Characterization of knockin mice at the Rosa26, Tac1 and Plekhg1 loci generated by homologous recombination in oocytes. PLoS One 2018; 13:e0193129. [PMID: 29485996 PMCID: PMC5828354 DOI: 10.1371/journal.pone.0193129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/05/2018] [Indexed: 11/19/2022] Open
Abstract
Design and engineering of complex knockin mice has revolutionized the in vivo manipulation of genetically defined cells. Recently development of the bacterial clustered regularly interspersed short palindromic repeats (CRISPR) associated protein 9 (Cas9) system for single site cleavage of mammalian genomes has opened the way for rapid generation of knockin mice by targeting homology directed repair to selected cleavage sites. We used this approach to generate new lines of mice that will be useful for a variety of aspects of neuroscience research. These lines have been bred to homozygosity and details of the expression and function of the transgenes are reported. Two lines target the Rosa26-locus and have been engineered to allow Cre-dependent expression of the avian tva receptor, and Cre-dependent expression of a cell surface targeted spaghetti-monster carrying many copies of the "ollas-tag". Another line expresses red fluorescent protein and tva in Tac1-positive neurons; the fourth line targets FlpO expression to Plekhg1 expressing neurons, providing a powerful approach to modify gene expression in thalamic excitatory neurons.
Collapse
Affiliation(s)
- Youmei Wu
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - María José Luna
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lauren S. Bonilla
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicholas J. P. Ryba
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James M. Pickel
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
17
|
Winer BY, Huang T, Low BE, Avery C, Pais MA, Hrebikova G, Siu E, Chiriboga L, Wiles MV, Ploss A. Recapitulation of treatment response patterns in a novel humanized mouse model for chronic hepatitis B virus infection. Virology 2016; 502:63-72. [PMID: 28006671 DOI: 10.1016/j.virol.2016.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 02/08/2023]
Abstract
There are ~350 million chronic carriers of hepatitis B (HBV). While a prophylactic vaccine and drug regimens to suppress viremia are available, chronic HBV infection is rarely cured. HBV's limited host tropism leads to a scarcity of susceptible small animal models and is a hurdle to developing curative therapies. Mice that support engraftment with human hepatoctyes have traditionally been generated through crosses of murine liver injury models to immunodeficient backgrounds. Here, we describe the disruption of fumarylacetoacetate hydrolase directly in the NOD Rag1-/- IL2RγNULL (NRG) background using zinc finger nucleases. The resultant human liver chimeric mice sustain persistent HBV viremia for >90 days. When treated with standard of care therapy, HBV DNA levels decrease below detection but rebound when drug suppression is released, mimicking treatment response observed in patients. Our study highlights the utility of directed gene targeting approaches in zygotes to create new humanized mouse models for human diseases.
Collapse
Affiliation(s)
- Benjamin Y Winer
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, NJ 08544, USA
| | - Tiffany Huang
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, NJ 08544, USA
| | - Benjamin E Low
- Department of Technology Evaluation and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500 USA
| | - Cindy Avery
- Department of Technology Evaluation and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500 USA
| | - Mihai-Alexandru Pais
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, NJ 08544, USA
| | - Gabriela Hrebikova
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, NJ 08544, USA
| | - Evelyn Siu
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, NJ 08544, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY 10016, USA
| | - Michael V Wiles
- Department of Technology Evaluation and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500 USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, NJ 08544, USA.
| |
Collapse
|
18
|
Homberg JR, Kyzar EJ, Nguyen M, Norton WH, Pittman J, Poudel MK, Gaikwad S, Nakamura S, Koshiba M, Yamanouchi H, Scattoni ML, Ullman JF, Diamond DM, Kaluyeva AA, Parker MO, Klimenko VM, Apryatin SA, Brown RE, Song C, Gainetdinov RR, Gottesman II, Kalueff AV. Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neurosci Biobehav Rev 2016; 65:292-312. [DOI: 10.1016/j.neubiorev.2016.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
|
19
|
Miyasaka Y, Shitara H, Suzuki S, Yoshimoto S, Seki Y, Ohshiba Y, Okumura K, Taya C, Tokano H, Kitamura K, Takada T, Hibino H, Shiroishi T, Kominami R, Yonekawa H, Kikkawa Y. Heterozygous mutation of Ush1g/Sans in mice causes early-onset progressive hearing loss, which is recovered by reconstituting the strain-specific mutation in Cdh23. Hum Mol Genet 2016; 25:2045-2059. [PMID: 26936824 DOI: 10.1093/hmg/ddw078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
Most clinical reports have suggested that patients with congenital profound hearing loss have recessive mutations in deafness genes, whereas dominant alleles are associated with progressive hearing loss (PHL). Jackson shaker (Ush1gjs) is a mouse model of recessive deafness that exhibits congenital profound deafness caused by the homozygous mutation of Ush1g/Sans on chromosome 11. We found that C57BL/6J-Ush1gjs/+ heterozygous mice exhibited early-onset PHL (ePHL) accompanied by progressive degeneration of stereocilia in the cochlear outer hair cells. Interestingly, ePHL did not develop in mutant mice with the C3H/HeN background, thus suggesting that other genetic factors are required for ePHL development. Therefore, we performed classical genetic analyses and found that the occurrence of ePHL in Ush1gjs/+ mice was associated with an interval in chromosome 10 that contains the cadherin 23 gene (Cdh23), which is also responsible for human deafness. To confirm this mutation effect, we generated C57BL/6J-Ush1gjs/+, Cdh23c.753A/G double-heterozygous mice by using the CRISPR/Cas9-mediated Cdh23c.753A>G knock-in method. The Cdh23c.753A/G mice harbored a one-base substitution (A for G), and the homozygous A allele caused moderate hearing loss with aging. Analyses revealed the complete recovery of ePHL and stereocilia degeneration in C57BL/6J-Ush1gjs/+ mice. These results clearly show that the development of ePHL requires at least two mutant alleles of the Ush1g and Cdh23 genes. Our results also suggest that because the SANS and CDH23 proteins form a complex in the stereocilia, the interaction between these proteins may play key roles in the maintenance of stereocilia and the prevention of ePHL.
Collapse
Affiliation(s)
- Yuki Miyasaka
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Sachi Yoshimoto
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Yasuhiro Ohshiba
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences
| | - Kazuhiro Okumura
- Division of Oncogenomics, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba 260-0801, Japan
| | - Choji Taya
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hisashi Tokano
- Department of Otolaryngology, Tokyo Medical and Dental University, Tokyo 113-0034, Japan and
| | - Ken Kitamura
- Department of Otolaryngology, Tokyo Medical and Dental University, Tokyo 113-0034, Japan and
| | - Toyoyuki Takada
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | | | - Hiromichi Yonekawa
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences,
| |
Collapse
|
20
|
Kaneko T, Mashimo T. Simple Genome Editing of Rodent Intact Embryos by Electroporation. PLoS One 2015; 10:e0142755. [PMID: 26556280 PMCID: PMC4640526 DOI: 10.1371/journal.pone.0142755] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/26/2015] [Indexed: 11/23/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system is a powerful tool for genome editing in animals. Recently, new technology has been developed to genetically modify animals without using highly skilled techniques, such as pronuclear microinjection of endonucleases. Technique for animal knockout system by electroporation (TAKE) method is a simple and effective technology that produces knockout rats by introducing endonuclease mRNAs into intact embryos using electroporation. Using TAKE method and CRISPR/Cas system, the present study successfully produced knockout and knock-in mice and rats. The mice and rats derived from embryos electroporated with Cas9 mRNA, gRNA and single-stranded oligodeoxynucleotide (ssODN) comprised the edited targeted gene as a knockout (67% of mice and 88% of rats) or knock-in (both 33%). The TAKE method could be widely used as a powerful tool to produce genetically modified animals by genome editing.
Collapse
Affiliation(s)
- Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606–8501, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Faculty of Medicine, Osaka University, Osaka, 565–0871, Japan
| |
Collapse
|
21
|
Kaneko T. Simple gamete preservation and artificial reproduction of mammals using micro-insemination techniques. Reprod Med Biol 2014; 14:99-105. [PMID: 29259407 DOI: 10.1007/s12522-014-0202-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/09/2014] [Indexed: 11/24/2022] Open
Abstract
Assisted reproductive technology (ART) has been applied in various procedures as an effective breeding method in experimental, domestic, and wild animals, and for the treatment of human infertility. Micro-insemination techniques such as intracytoplasmic injection of spermatozoa and spermatids are now routinely used ART tools. With these techniques, even immotile and immature sperm cells can be employed as donors for producing the next generation. Gamete preservation, another ART tool, has contributed to reproductive regulation, worldwide transportation, and disease protection of animal strains, and the preserved gametes have been effectively used for the production of offspring. ART is now an indispensable tool in mammalian reproduction. This review covers the latest ART tools, with a particular emphasis on micro-insemination and gamete preservation, and discusses the future direction of mammalian artificial reproductive technology.
Collapse
Affiliation(s)
- Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine Kyoto University Yoshida-Konoe-cho, Sakyo-ku 606-8501 Kyoto Japan
| |
Collapse
|