1
|
Zheng G, Yu W, Xu Z, Yang C, Wang Y, Yue Z, Xiao Q, Zhang W, Wu X, Zang F, Wang J, Wang L, Yuan WE, Hu B, Chen H. Neuroimmune modulating and energy supporting nanozyme-mimic scaffold synergistically promotes axon regeneration after spinal cord injury. J Nanobiotechnology 2024; 22:399. [PMID: 38970101 PMCID: PMC11225227 DOI: 10.1186/s12951-024-02594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/28/2024] [Indexed: 07/07/2024] Open
Abstract
Spinal cord injury (SCI) represents a profound central nervous system affliction, resulting in irreversibly compromised daily activities and disabilities. SCI involves excessive inflammatory responses, which are characterized by the existence of high levels of proinflammatory M1 macrophages, and neuronal mitochondrial energy deficit, exacerbating secondary damage and impeding axon regeneration. This study delves into the mechanistic intricacies of SCI, offering insights from the perspectives of neuroimmune regulation and mitochondrial function, leading to a pro-fibrotic macrophage phenotype and energy-supplying deficit. To address these challenges, we developed a smart scaffold incorporating enzyme mimicry nanoparticle-ceriumoxide (COPs) into nanofibers (NS@COP), which aims to pioneer a targeted neuroimmune repair strategy, rescuing CGRP receptor on macrophage and concurrently remodeling mitochondrial function. Our findings indicate that the integrated COPs restore the responsiveness of pro-inflammatory macrophages to calcitonin gene-related peptide (CGRP) signal by up-regulating receptor activity modifying protein 1 (RAMP1), a vital component of the CGRP receptor. This promotes macrophage fate commitment to an anti-inflammatory pro-resolution M2 phenotype, then alleviating glial scar formation. In addition, NS@COP implantation also protected neuronal mitochondrial function. Collectively, our results suggest that the strategy of integrating nanozyme COP nanoparticles into a nanofiber scaffold provides a promising therapeutic candidate for spinal cord trauma via rational regulation of neuroimmune communication and mitochondrial function.
Collapse
Affiliation(s)
- Genjiang Zheng
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Ministry of Education, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zeng Xu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Chen Yang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yunhao Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Zhihao Yue
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Qiangqiang Xiao
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Wenyu Zhang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Xiaodong Wu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Fazhi Zang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Jianxi Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Lei Wang
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. Guangzhou North Road, Guangzhou, 510515, China
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China.
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Ministry of Education, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China.
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China.
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
2
|
Lee J, Pye N, Ellis L, Vos KD, Mortiboys H. Evidence of mitochondrial dysfunction in ALS and methods for measuring in model systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:269-325. [PMID: 38802177 DOI: 10.1016/bs.irn.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Metabolic dysfunction is a hallmark of multiple amyotrophic lateral sclerosis (ALS) models with a majority of ALS patients exhibiting hypermetabolism. The central sites of metabolism in the cell are mitochondria, capable of utilising a multitude of cellular substrates in an array of ATP-generating reactions. With reactive oxygen species (ROS) production occurring during some of these reactions, mitochondria can contribute considerably to oxidative stress. Mitochondria are also very dynamic organelles, interacting with other organelles, undergoing fusion/fission in response to changing metabolic states and being turned over by the cell regularly. Disruptions to many of these mitochondrial functions and processes have been reported in ALS models, largely indicating compromised mitochondrial function, increased ROS production by mitochondria, disrupted interactions with the endoplasmic reticulum and reduced turnover. This chapter summarises methods routinely used to assess mitochondria in ALS models and the alterations that have been reported in these models.
Collapse
Affiliation(s)
- James Lee
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Natalie Pye
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Laura Ellis
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Kurt De Vos
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
3
|
Wang S, Yao Z, Zhang X, Li J, Huang C, Ouyang Y, Qian Y, Fan C. Energy-Supporting Enzyme-Mimic Nanoscaffold Facilitates Tendon Regeneration Based on a Mitochondrial Protection and Microenvironment Remodeling Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202542. [PMID: 36000796 PMCID: PMC9631092 DOI: 10.1002/advs.202202542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/15/2022] [Indexed: 05/15/2023]
Abstract
Tendon injury is a tricky and prevalent motor system disease, leading to compromised daily activity and disability. Insufficient regenerative capability and dysregulation of immune microenvironment are the leading causes of functional loss. First, this work identifies persistent oxidative stress and mitochondrial impairment in the regional tendon tissues postinjury. Therefore, a smart scaffold incorporating the enzyme mimicry nanoparticle-ceria nanozyme (CeNPs) into the nanofiber bundle scaffold (NBS@CeO) with porous, anisotropic, and enhanced mechanical properties is designed to innovatively explore a targeted energy-supporting repair strategy by rescuing mitochondrial function and remodeling the microenvironment favoring endogenous regeneration. The integrated CeNPs scavenge excessive reactive oxygen species (ROS), stabilize the mitochondria membrane potential (ΔΨm), and ATP synthesis of tendon-derived stem cells (TDSCs) under oxidative stress. In a rat Achilles tendon defect model, NBS@CeO reduces oxidative damage and accelerates structural regeneration of collagen fibers, manifesting as recovering mechanical properties and motor function. Furthermore, NBS@CeO mediates the rebalance of endogenous regenerative signaling and dysregulated immune microenvironment by alleviating senescence and apoptosis of TDSCs, downregulating the secretion of senescence-associated secretory phenotype (SASP), and inducing macrophage M2 polarization. This innovative strategy highlights the role of NBS@CeO in tendon repair and thus provides a potential therapeutic approach for promoting tendon regeneration.
Collapse
Affiliation(s)
- Shikun Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Zhixiao Yao
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Xinyu Zhang
- Engineering Research Center of Technical TextilesMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Juehong Li
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Chen Huang
- Engineering Research Center of Technical TextilesMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Yuanming Ouyang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yun Qian
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Cunyi Fan
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| |
Collapse
|
4
|
Sergunova V, Leesment S, Kozlov A, Inozemtsev V, Platitsina P, Lyapunova S, Onufrievich A, Polyakov V, Sherstyukova E. Investigation of Red Blood Cells by Atomic Force Microscopy. SENSORS 2022; 22:s22052055. [PMID: 35271203 PMCID: PMC8914789 DOI: 10.3390/s22052055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023]
Abstract
Currently, much research is devoted to the study of biological objects using atomic force microscopy (AFM). This method’s resolution is superior to the other non-scanning techniques. Our study aims to further emphasize some of the advantages of using AFM as a clinical screening tool. The study focused on red blood cells exposed to various physical and chemical factors, namely hemin, zinc ions, and long-term storage. AFM was used to investigate the morphological, nanostructural, cytoskeletal, and mechanical properties of red blood cells (RBCs). Based on experimental data, a set of important biomarkers determining the status of blood cells have been identified.
Collapse
Affiliation(s)
- Viktoria Sergunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (S.L.); (E.S.)
- Correspondence: ; Tel.: +7-985-724-1827
| | - Stanislav Leesment
- NT-MDT Spectrum Instruments, Proezd 4922, 4/3 Zelenograd, 124460 Moscow, Russia; (S.L.); (V.P.)
| | - Aleksandr Kozlov
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Vladimir Inozemtsev
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (S.L.); (E.S.)
| | - Polina Platitsina
- Institute of Biotechnical Systems and Technologies National Research“MIET”, Shokin Sq., Build.1, 124498 Zelenograd, Russia;
| | - Snezhanna Lyapunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (S.L.); (E.S.)
| | - Alexander Onufrievich
- Federal State Budgetary Institution “N.N. Burdenko Main Military Clinical Hospital” of the Ministry of Defense of the Russian Federation, Hospital Sq., Build. 3, 105094 Moscow, Russia;
| | - Vyacheslav Polyakov
- NT-MDT Spectrum Instruments, Proezd 4922, 4/3 Zelenograd, 124460 Moscow, Russia; (S.L.); (V.P.)
| | - Ekaterina Sherstyukova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (S.L.); (E.S.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| |
Collapse
|