1
|
Paik PK, Luo J, Ai N, Kim R, Ahn L, Biswas A, Coker C, Ma W, Wong P, Buonocore DJ, Lai WV, Chaft JE, Acharyya S, Massagué J, Kris MG. Phase I trial of the TNF-α inhibitor certolizumab plus chemotherapy in stage IV lung adenocarcinomas. Nat Commun 2022; 13:6095. [PMID: 36241629 PMCID: PMC9568581 DOI: 10.1038/s41467-022-33719-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
We previously identified a chemotherapy-induced paracrine inflammatory loop that paradoxically mitigates the anti-tumor effect of chemotherapy and triggers metastatic propagation in breast and lung cancer models. Therefore, we sought to further validate and translate these findings into patient care by coupling the anti-TNF-α drug certolizumab pegol with standard cisplatin doublet chemotherapy. Here we first validate the anti-metastatic effect of certolizumab in a liver-metastatic Lewis Lung Carcinoma model. We then evaluate the safety, efficacy, and pharmacodynamic effects of certolizumab with cisplatin and pemetrexed in an open label Phase 1 clinical trial (NCT02120807) of eighteen adult patients with stage IV lung adenocarcinomas. The primary outcome is maximum tolerated dose. Secondary outcomes are response rate and progression-free survival (PFS); pharmacodynamic changes in blood and tumor are evaluated as a correlative outcome. There were nine partial responses among 16 patients evaluable (56%, 95% CI 30 to 80%). The median duration of response was 9.0 months (range 5.9 to 42.6 months) and median PFS was 7.1 months (95% CI 6.3 to NR). The standard 400 mg dose of certolizumab, added to cisplatin and pemetrexed, is well-tolerated and, as a correlative endpoint, demonstrates potent pharmacodynamic inhibition of peripheral cytokines associated with the paracrine inflammatory loop.
Collapse
Affiliation(s)
- Paul K Paik
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Jia Luo
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ni Ai
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Rachel Kim
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linda Ahn
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anup Biswas
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Courtney Coker
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Wanchao Ma
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Phillip Wong
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darren J Buonocore
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - W Victoria Lai
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jamie E Chaft
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Joan Massagué
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark G Kris
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
2
|
Zhang Q, Bao J, Duan T, Hu M, He Y, Wang J, Hu R, Tang J. Nanomicelle-Microsphere Composite as a Drug Carrier to Improve Lung-Targeting Specificity for Lung Cancer. Pharmaceutics 2022; 14:pharmaceutics14030510. [PMID: 35335884 PMCID: PMC8955237 DOI: 10.3390/pharmaceutics14030510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Lung cancer is the second-most common cancer and has the highest mortality among all cancer types. Nanoparticle (NP) drug delivery systems have been used to improve the therapeutic effectiveness of lung cancer, but rapid clearance and poor targeting limit their clinical utility. Here, we developed a nanomicelle-microsphere composite, in which doxorubicin (DOX) was loaded with spermine (Spm) modified poly (ethylene glycol)-poly(ε-caprolactone) (PEG-PCL) micelles, and then the nanomicelles were noncovalently adsorbed on the surface of poly (lactic-co-glycolic acid) (PLGA) microspheres. The attachment was confirmed by scanning electron microscopy and confocal microscopy. In vitro cell experiments, MTT assays and intracellular uptake assays were used to demonstrate the cytotoxicity and the cellular uptake of micelles in A549 cells. In vivo biodistribution studies were conducted, an orthotopic lung cancer implantation model based on C57BL/6 mice was established, and then real-time fluorescence imaging analysis was used to study the targeted efficacy of the complex. A nanomicelle-microsphere composite was successively constructed. Moreover, Spm-modified micelles significantly enhanced cytotoxicity and displayed more efficient cellular uptake. Notably, an orthotopic lung cancer implantation model based on C57BL/6 mice was also successively established, and in vivo biodistribution studies confirmed that the complex greatly improved the distribution of DOX in the lungs and displayed notable tumor targeting. These results suggested that the nanomicelle-microsphere composite has potential application prospects in the targeted treatment of lung cancer.
Collapse
Affiliation(s)
- Qianqian Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (Q.Z.); (J.B.); (T.D.); (M.H.); (Y.H.); (J.W.)
| | - Jianwei Bao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (Q.Z.); (J.B.); (T.D.); (M.H.); (Y.H.); (J.W.)
| | - Tijie Duan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (Q.Z.); (J.B.); (T.D.); (M.H.); (Y.H.); (J.W.)
| | - Minxing Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (Q.Z.); (J.B.); (T.D.); (M.H.); (Y.H.); (J.W.)
| | - Yuting He
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (Q.Z.); (J.B.); (T.D.); (M.H.); (Y.H.); (J.W.)
| | - Junwei Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (Q.Z.); (J.B.); (T.D.); (M.H.); (Y.H.); (J.W.)
| | - Rongfeng Hu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Anhui University of Chinese Medicine, Hefei 230038, China
- Correspondence: (R.H.); (J.T.); Tel.: +86-55165161176 (J.T.)
| | - Jihui Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (Q.Z.); (J.B.); (T.D.); (M.H.); (Y.H.); (J.W.)
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Anhui University of Chinese Medicine, Hefei 230038, China
- Correspondence: (R.H.); (J.T.); Tel.: +86-55165161176 (J.T.)
| |
Collapse
|
3
|
Biswas AK, Han S, Tai Y, Ma W, Coker C, Quinn SA, Shakri AR, Zhong TJ, Scholze H, Lagos GG, Mela A, Manova-Todorova K, de Stanchina E, Ferrando AA, Mendelsohn C, Canoll P, Yu HA, Paik PK, Saqi A, Shu CA, Kris MG, Massague J, Acharyya S. Targeting S100A9-ALDH1A1-retinoic acid signaling to suppress brain relapse in EGFR-mutant lung cancer. Cancer Discov 2022; 12:1002-1021. [PMID: 35078784 PMCID: PMC8983473 DOI: 10.1158/2159-8290.cd-21-0910] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib has significantly prolonged progression-free survival (PFS) in EGFR-mutant lung cancer patients, including those with brain metastases. However, despite striking initial responses, osimertinib-treated patients eventually develop lethal metastatic relapse, often to the brain. Although osimertinib-refractory brain relapse is a major clinical challenge, its underlying mechanisms remain poorly understood. Using metastatic models of EGFR-mutant lung cancer, we show that cancer cells expressing high intracellular S100A9 escape osimertinib and initiate brain relapses. Mechanistically, S100A9 upregulates ALDH1A1 expression and activates the retinoic acid (RA) signaling pathway in osimertinib-refractory cancer cells. We demonstrate that the genetic repression of S100A9, ALDH1A1, or RA receptors (RAR) in cancer cells, or treatment with a pan-RAR antagonist, dramatically reduces brain metastasis. Importantly, S100A9 expression in cancer cells correlates with poor PFS in osimertinib-treated patients. Our study therefore identifies a novel, therapeutically targetable S100A9-ALDH1A1-RA axis that drives brain relapse.
Collapse
Affiliation(s)
| | | | | | - Wanchao Ma
- Pathology and Cell Biology, Columbia University
| | - Courtney Coker
- Institute for Cancer Genetics, Columbia University Medical Center
| | - S Aidan Quinn
- Pediatric Oncology, Dana-Farber/Harvard Cancer Center
| | | | | | | | | | - Angeliki Mela
- Pathology and Cell Biology, Columbia University Medical Center
| | | | | | | | | | | | - Helena A Yu
- Medicine, Memorial Sloan Kettering Cancer Center
| | - Paul K Paik
- Medicine, Memorial Sloan Kettering Cancer Center
| | - Anjali Saqi
- Pathology and Cell Biology, Columbia University
| | | | | | - Joan Massague
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
4
|
Xie S, Wu Z, Qi Y, Wu B, Zhu X. The metastasizing mechanisms of lung cancer: Recent advances and therapeutic challenges. Biomed Pharmacother 2021; 138:111450. [PMID: 33690088 DOI: 10.1016/j.biopha.2021.111450] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the common malignant tumors that threaten human life with serious incidence and high mortality. According to the histopathological characteristics, lung cancer is mainly divided into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for about 80-85% of lung cancers. In fact, lung cancer metastasis is a major cause of treatment failure in clinical patients. The underlying reason is that the mechanisms of lung cancer metastasis are still not fully understood. The metastasis of lung cancer cells is controlled by many factors, including the interaction of various components in the lung cancer microenvironment, epithelial-mesenchymal transition (EMT) transformation, and metastasis of cancer cells through blood vessels and lymphatics. The molecular relationships are even more intricate. Further study on the mechanisms of lung cancer metastasis and in search of effective therapeutic targets can bring more reference directions for clinical drug research and development. This paper focuses on the factors affecting lung cancer metastasis and connects with related molecular mechanisms of the lung cancer metastasis and mechanisms of lung cancer to specific organs, which mainly reviews the latest research progress of NSCLC metastasis. Besides, in this paper, experimental models of lung cancer and metastasis, mechanisms in SCLC transfer and the challenges about clinical management of lung cancer are also discussed. The review is intended to provide reference value for the future research in this field and promising treatment clues for clinical patients.
Collapse
Affiliation(s)
- Shimin Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zhengguo Wu
- Department of Thoracic Surgery, Yantian District People's Hospital, Shenzhen, China
| | - Yi Qi
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Binhua Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
5
|
Huang Y, Lu Y, Vadlamudi M, Zhao S, Felmlee M, Rahimian R, Guo X. Intrapulmonary inoculation of multicellular spheroids to construct an orthotopic lung cancer xenograft model that mimics four clinical stages of non-small cell lung cancer. J Pharmacol Toxicol Methods 2020; 104:106885. [PMID: 32531198 DOI: 10.1016/j.vascn.2020.106885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Lung cancer leads in mortality among all types of cancer in US and Non-small cell lung cancer (NSCLC) is the major type of lung cancer. Mice models of lung cancer based on subcutaneous or orthotopic inoculation of cancer cell suspension do not adequately mimic the progression of lung cancer in clinic. METHODS A549-iRFP cells (human NSCLC adenocarcinoma) were cultured to form multicellular spheroids (MCS), which were then inoculated intrapulmonarily into male athymic nude mice. The xenograft cancer development was monitored by in vivo fluorescent imaging and validated by open-chest anatomy, ex vivo fluorescent imaging, and histological studies. RESULTS The newly developed orthotopic xenograft model of lung cancer simulated all four clinical stages of NSCLC progression over one month: Stage 1) localized tumor at the inoculation site, Stage 2) multiple tumor nodules or larger tumor nodule on the same side of the lung, Stage 3) cancer growth on heart surface, and Stage 4) metastatic cancer on both sides of the lung. The model yielded high rates of postoperative survival (100%) and parenchymal tumor establishment (88.9%). The roughness of the inoculated MCS associated negatively with the time needed to develop metastatic cancer (p = .0299). DISCUSSION This new orthotopic xenograft model of NSCLC would facilitate the development of medications to treat lung cancer.
Collapse
Affiliation(s)
- Yingbo Huang
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA.
| | - Yifan Lu
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA.
| | - Mallika Vadlamudi
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA.
| | - Shen Zhao
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA.
| | - Melanie Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA.
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA.
| | - Xin Guo
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA.
| |
Collapse
|
6
|
Viswanath P, Peng S, Singh R, Kingsley C, Balter PA, Johnson FM. A Novel Method for Quantifying Total Thoracic Tumor Burden in Mice. Neoplasia 2018; 20:975-984. [PMID: 30157470 PMCID: PMC6111024 DOI: 10.1016/j.neo.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
Mouse models are powerful tools to study lung cancer initiation and progression in vivo and have contributed significantly to recent advances in therapy. Using micro-computed tomography to monitor and study parenchymal and extra-parenchymal metastases in existing murine models of lung cancer is challenging owing to a lack of radiographic contrast and difficulty in achieving respiratory gating. To facilitate the analysis of these in vivo imaging studies and study of tumor progression in murine models we developed a novel, rapid, semi-automated method of calculating thoracic tumor burden from computed tomography images. This method, in which commercially available software is used to calculate the mass of the thoracic cavity (MTC), takes into account the aggregate tumor burden in the thoracic cavity. The present study showed that in tumor-free mice, the MTC does not change over time and is not affected by breathing, whereas in tumor-bearing mice, the increase in the MTC is a measure of tumor mass that correlates well with tumor burden measured by lung weight. Tumor burden calculated with our MTC method correlated with that measured by lung weight as well as or better than that calculated using four established methods. To test this method, we assessed metastatic tumor development and response to a pharmacologic PLK1 inhibitor in an orthotopic xenograft mouse model. PLK1 inhibition significantly inhibited tumor growth. Our results demonstrate that the MTC method can be used to study dynamic changes in tumor growth and response to therapeutics in genetically engineered mouse models and orthotopic xenograft mouse models of lung cancer.
Collapse
Affiliation(s)
- Pavitra Viswanath
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; The University of Texas Graduate School of Biomedical Sciences, Houston, TX
| | - Shaohua Peng
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ratnakar Singh
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Charles Kingsley
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Peter A Balter
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Faye M Johnson
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; The University of Texas Graduate School of Biomedical Sciences, Houston, TX.
| |
Collapse
|
7
|
Husari A, Hashem Y, Zaatari G, El Sabban M. Pomegranate Juice Prevents the Formation of Lung Nodules Secondary to Chronic Cigarette Smoke Exposure in an Animal Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6063201. [PMID: 29333211 PMCID: PMC5733131 DOI: 10.1155/2017/6063201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/08/2017] [Accepted: 10/01/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cigarette smoke (CS) induces an oxidative stress, DNA damage, and lung cancer. Pomegranate juice (PJ) possess potent antioxidant activity attributed to its polyphenols. We investigated whether PJ supplementation would prevent the formation of lung nodules, attenuate mitotic activity, and reduce hypoxia-inducible factor-1α (HIF-1α) expression secondary to CS exposure in an animal model. METHODS Mice were divided into: Control group, CS group, CS + PJ group, and PJ-only group. CS and CS + PJ were exposed to CS, 5 days per week, for a total of 5 months. Animals were then housed for additional four months. CS + PJ and PJ groups received PJ throughout the experiment period while others received placebo. At the end of the experiment, the incidence of lung nodules was assessed by (1) histological analysis, (2) mitotic activity [measurement of PHH3 antibodies], and (3) measurement of HIF-1α expression. RESULTS The incidence of lung nodules was significantly increased in CS. CS exposure significantly increased PHH3 and HIF-1α expression. PJ supplementation attenuated the formation of lung nodules and reduced PHH3 and HIF-1α expression. CONCLUSION PJ supplementation significantly decreased the incidence of lung cancer, secondary to CS, prevented the formation of lung nodules, and reduced mitotic activity and HIF-1α expression in an animal model.
Collapse
Affiliation(s)
- Ahmad Husari
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Yasmine Hashem
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Ghazi Zaatari
- Department of Pathology & Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|