1
|
Zhou Y, Liu X, Qi Z, Yang L, Huang C, Lin D. Deciphering the Therapeutic Role of Lactate in Combating Disuse-Induced Muscle Atrophy: An NMR-Based Metabolomic Study in Mice. Molecules 2024; 29:2216. [PMID: 38792078 PMCID: PMC11124173 DOI: 10.3390/molecules29102216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Disuse muscle atrophy (DMA) is a significant healthcare challenge characterized by progressive loss of muscle mass and function resulting from prolonged inactivity. The development of effective strategies for muscle recovery is essential. In this study, we established a DMA mouse model through hindlimb suspension to evaluate the therapeutic potential of lactate in alleviating the detrimental effects on the gastrocnemius muscle. Using NMR-based metabolomic analysis, we investigated the metabolic changes in DMA-injured gastrocnemius muscles compared to controls and evaluated the beneficial effects of lactate treatment. Our results show that lactate significantly reduced muscle mass loss and improved muscle function by downregulating Murf1 expression, decreasing protein ubiquitination and hydrolysis, and increasing myosin heavy chain levels. Crucially, lactate corrected perturbations in four key metabolic pathways in the DMA gastrocnemius: the biosynthesis of phenylalanine, tyrosine, and tryptophan; phenylalanine metabolism; histidine metabolism; and arginine and proline metabolism. In addition to phenylalanine-related pathways, lactate also plays a role in regulating branched-chain amino acid metabolism and energy metabolism. Notably, lactate treatment normalized the levels of eight essential metabolites in DMA mice, underscoring its potential as a therapeutic agent against the consequences of prolonged inactivity and muscle wasting. This study not only advances our understanding of the therapeutic benefits of lactate but also provides a foundation for novel treatment approaches aimed at metabolic restoration and muscle recovery in conditions of muscle wasting.
Collapse
Affiliation(s)
- Yu Zhou
- Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361021, China; (Y.Z.); (X.L.)
| | - Xi Liu
- Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361021, China; (Y.Z.); (X.L.)
| | - Zhen Qi
- Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361021, China; (Y.Z.); (X.L.)
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361021, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China;
| | - Donghai Lin
- Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361021, China; (Y.Z.); (X.L.)
| |
Collapse
|
2
|
Eltemur D, Robatscher P, Oberhuber M, Scampicchio M, Ceccon A. Applications of Solution NMR Spectroscopy in Quality Assessment and Authentication of Bovine Milk. Foods 2023; 12:3240. [PMID: 37685173 PMCID: PMC10486658 DOI: 10.3390/foods12173240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is emerging as a promising technique for the analysis of bovine milk, primarily due to its non-destructive nature, minimal sample preparation requirements, and comprehensive approach to untargeted milk analysis. These inherent strengths of NMR make it a formidable complementary tool to mass spectrometry-based techniques in milk metabolomic studies. This review aims to provide a comprehensive overview of the applications of NMR techniques in the quality assessment and authentication of bovine milk. It will focus on the experimental setup and data processing techniques that contribute to achieving accurate and highly reproducible results. The review will also highlight key studies that have utilized commonly used NMR methodologies in milk analysis, covering a wide range of application fields. These applications include determining milk animal species and feeding regimes, as well as assessing milk nutritional quality and authenticity. By providing an overview of the diverse applications of NMR in milk analysis, this review aims to demonstrate the versatility and significance of NMR spectroscopy as an invaluable tool for milk and dairy metabolomics research and hence, for assessing the quality and authenticity of bovine milk.
Collapse
Affiliation(s)
- Dilek Eltemur
- Laimburg Research Centre, Laimburg 6—Pfatten (Vadena), 39040 Auer, Italy (A.C.)
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Unversità 5, 39100 Bolzano, Italy
| | - Peter Robatscher
- Laimburg Research Centre, Laimburg 6—Pfatten (Vadena), 39040 Auer, Italy (A.C.)
| | - Michael Oberhuber
- Laimburg Research Centre, Laimburg 6—Pfatten (Vadena), 39040 Auer, Italy (A.C.)
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Unversità 5, 39100 Bolzano, Italy
| | - Alberto Ceccon
- Laimburg Research Centre, Laimburg 6—Pfatten (Vadena), 39040 Auer, Italy (A.C.)
| |
Collapse
|
3
|
Lopez-Tello J, Schofield Z, Kiu R, Dalby MJ, van Sinderen D, Le Gall G, Sferruzzi-Perri AN, Hall LJ. Maternal gut microbiota Bifidobacterium promotes placental morphogenesis, nutrient transport and fetal growth in mice. Cell Mol Life Sci 2022; 79:386. [PMID: 35760917 PMCID: PMC9236968 DOI: 10.1007/s00018-022-04379-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 12/22/2022]
Abstract
The gut microbiota plays a central role in regulating host metabolism. While substantial progress has been made in discerning how the microbiota influences host functions post birth and beyond, little is known about how key members of the maternal gut microbiota can influence feto-placental growth. Notably, in pregnant women, Bifidobacterium represents a key beneficial microbiota genus, with levels observed to increase across pregnancy. Here, using germ-free and specific-pathogen-free mice, we demonstrate that the bacterium Bifidobacterium breve UCC2003 modulates maternal body adaptations, placental structure and nutrient transporter capacity, with implications for fetal metabolism and growth. Maternal and placental metabolome were affected by maternal gut microbiota (i.e. acetate, formate and carnitine). Histological analysis of the placenta confirmed that Bifidobacterium modifies placental structure via changes in Igf2P0, Dlk1, Mapk1 and Mapk14 expression. Additionally, B. breve UCC2003, acting through Slc2a1 and Fatp1-4 transporters, was shown to restore fetal glycaemia and fetal growth in association with changes in the fetal hepatic transcriptome. Our work emphasizes the importance of the maternal gut microbiota on feto-placental development and sets a foundation for future research towards the use of probiotics during pregnancy.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | - Zoe Schofield
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Raymond Kiu
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Matthew J Dalby
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Gwénaëlle Le Gall
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, James Watson Road, Norwich Research Park, Norwich, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | - Lindsay J Hall
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, James Watson Road, Norwich Research Park, Norwich, UK.
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
4
|
Yanibada B, Boudra H, Debrauwer L, Martin C, Morgavi DP, Canlet C. Evaluation of sample preparation methods for NMR-based metabolomics of cow milk. Heliyon 2018; 4:e00856. [PMID: 30364606 PMCID: PMC6197446 DOI: 10.1016/j.heliyon.2018.e00856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/24/2018] [Accepted: 10/10/2018] [Indexed: 01/26/2023] Open
Abstract
The quality of milk metabolome analyzed by nuclear magnetic resonance (NMR) is greatly influenced by the way samples are prepared. Although this analytical method is increasingly used to study milk metabolites, a thorough examination of available sample preparation protocols for milk has not been reported yet. We evaluated the performance of eight milk preparation methods namely (1) raw milk without any processing; (2) skimmed milk; (3) ultrafiltered milk; (4) skimming followed by ultrafiltration; (5) ultracentrifuged milk; (6) methanol; (7) dichloromethane; and (8) methanol/dichloromethane, in terms of spectra quality, repeatability, signal-to-noise ratio, extraction efficiency and yield criteria. A pooled sample of milk was used for all protocols. Skimming, ultracentrifugation and unprocessed milk protocols showed poor NMR spectra quality. Protocols involving multiple steps, namely methanol/dichloromethane extraction, and skimming followed by ultrafiltration produced inadequate results for signal-to-noise ratio parameter. Methanol and skimming associated to ultrafiltration provided good repeatability results compared to the other protocols. Chemical-based sample preparation protocols, particularly methanol, showed more efficient metabolite extraction compared to physical preparation methods. When considering all evaluation parameters, the methanol extraction protocol proved to be the best method. As a proof of utility, methanol protocol was then applied to milk samples from dairy cows fed a diet with or without a feed additive, showing a clear separation between the two groups of cows.
Collapse
Affiliation(s)
- Bénédict Yanibada
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - Hamid Boudra
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - Laurent Debrauwer
- Toxalim, Research Centre in Food Toxicology, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, F-31027, Toulouse, France.,Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, F-31027, Toulouse, France
| | - Cécile Martin
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - Diego P Morgavi
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - Cécile Canlet
- Toxalim, Research Centre in Food Toxicology, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, F-31027, Toulouse, France.,Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, F-31027, Toulouse, France
| |
Collapse
|
5
|
Cheng J, Lan W, Zheng G, Gao X. Metabolomics: A High-Throughput Platform for Metabolite Profile Exploration. Methods Mol Biol 2018. [PMID: 29536449 DOI: 10.1007/978-1-4939-7717-8_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabolomics aims to quantitatively measure small-molecule metabolites in biological samples, such as bodily fluids (e.g., urine, blood, and saliva), tissues, and breathe exhalation, which reflects metabolic responses of a living system to pathophysiological stimuli or genetic modification. In the past decade, metabolomics has made notable progresses in providing useful systematic insights into the underlying mechanisms and offering potential biomarkers of many diseases. Metabolomics is a complementary manner of genomics and transcriptomics, and bridges the gap between genotype and phenotype, which reflects the functional output of a biological system interplaying with environmental factors. Recently, the technology of metabolomics study has been developed quickly. This review will discuss the whole pipeline of metabolomics study, including experimental design, sample collection and preparation, sample detection and data analysis, as well as mechanism interpretation, which can help understand metabolic effects and metabolite function for living organism in system level.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Medical Instrument, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenxian Lan
- State Key Laboratory of Bio-Organic and Natural Product Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Guangyong Zheng
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Xianfu Gao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Zhang B, Xie M, Bruschweiler-Li L, Brüschweiler R. Nanoparticle-Assisted Removal of Protein in Human Serum for Metabolomics Studies. Anal Chem 2015; 88:1003-7. [PMID: 26605638 DOI: 10.1021/acs.analchem.5b03889] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Among human body fluids, serum plays a key role for diagnostic tests and, increasingly, for metabolomics analysis. However, the high protein content of serum poses significant challenges for nuclear magnetic resonance (NMR)-based metabolomics studies because it can strongly interfere with metabolite signal detection and quantitation. Although several methods for protein removal have been proposed, including ultrafiltration and organic-solvent-induced protein precipitation, there is currently no standard operating procedure for the elimination of protein from human serum samples. Here, we introduce novel procedures for the removal of protein from serum by the addition of nanoparticles. It is demonstrated how serum protein can be efficiently, cost-effectively, and environmentally friendly removed at physiological pH (pH 7.4) through attractive interactions with silica nanoparticles. It is further shown how serum can be processed with nanoparticles prior to ultrafiltration or organic-solvent-induced protein precipitation for optimal protein removal. After examination of all of the procedures, the combination of nanoparticle treatment and ultrafiltration is found to have a minimal effect on the metabolite content, leading to remarkably clean homo- and heteronuclear NMR spectra of the serum metabolome that compare favorably to other methods for protein removal.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry and Biochemistry, ‡Campus Chemical Instrument Center, and §Department of Biological Chemistry and Pharmacology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Mouzhe Xie
- Department of Chemistry and Biochemistry, ‡Campus Chemical Instrument Center, and §Department of Biological Chemistry and Pharmacology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Lei Bruschweiler-Li
- Department of Chemistry and Biochemistry, ‡Campus Chemical Instrument Center, and §Department of Biological Chemistry and Pharmacology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, ‡Campus Chemical Instrument Center, and §Department of Biological Chemistry and Pharmacology, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|