1
|
Hussein M, Andrade dos Ramos Z, Vink MA, Kroon P, Yu Z, Enjuanes L, Zuñiga S, Berkhout B, Herrera-Carrillo E. Efficient CRISPR-Cas13d-Based Antiviral Strategy to Combat SARS-CoV-2. Viruses 2023; 15:v15030686. [PMID: 36992394 PMCID: PMC10051389 DOI: 10.3390/v15030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The current SARS-CoV-2 pandemic forms a major global health burden. Although protective vaccines are available, concerns remain as new virus variants continue to appear. CRISPR-based gene-editing approaches offer an attractive therapeutic strategy as the CRISPR-RNA (crRNA) can be adjusted rapidly to accommodate a new viral genome sequence. This study aimed at using the RNA-targeting CRISPR-Cas13d system to attack highly conserved sequences in the viral RNA genome, thereby preparing for future zoonotic outbreaks of other coronaviruses. We designed 29 crRNAs targeting highly conserved sequences along the complete SARS-CoV-2 genome. Several crRNAs demonstrated efficient silencing of a reporter with the matching viral target sequence and efficient inhibition of a SARS-CoV-2 replicon. The crRNAs that suppress SARS-CoV-2 were also able to suppress SARS-CoV, thus demonstrating the breadth of this antiviral strategy. Strikingly, we observed that only crRNAs directed against the plus-genomic RNA demonstrated antiviral activity in the replicon assay, in contrast to those that bind the minus-genomic RNA, the replication intermediate. These results point to a major difference in the vulnerability and biology of the +RNA versus −RNA strands of the SARS-CoV-2 genome and provide important insights for the design of RNA-targeting antivirals.
Collapse
Affiliation(s)
- Mouraya Hussein
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Zaria Andrade dos Ramos
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Monique A. Vink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Pascal Kroon
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Zhenghao Yu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
2
|
Hussein M, Andrade dos Ramos Z, Berkhout B, Herrera-Carrillo E. In Silico Prediction and Selection of Target Sequences in the SARS-CoV-2 RNA Genome for an Antiviral Attack. Viruses 2022; 14:v14020385. [PMID: 35215977 PMCID: PMC8880226 DOI: 10.3390/v14020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
The SARS-CoV-2 pandemic has urged the development of protective vaccines and the search for specific antiviral drugs. The modern molecular biology tools provides alternative methods, such as CRISPR-Cas and RNA interference, that can be adapted as antiviral approaches, and contribute to this search. The unique CRISPR-Cas13d system, with the small crRNA guide molecule, mediates a sequence-specific attack on RNA, and can be developed as an anti-coronavirus strategy. We analyzed the SARS-CoV-2 genome to localize the hypothetically best crRNA-annealing sites of 23 nucleotides based on our extensive expertise with sequence-specific antiviral strategies. We considered target sites of which the sequence is well-conserved among SARS-CoV-2 isolates. As we should prepare for a potential future outbreak of related viruses, we screened for targets that are conserved between SARS-CoV-2 and SARS-CoV. To further broaden the search, we screened for targets that are conserved between SARS-CoV-2 and the more distantly related MERS-CoV, as well as the four other human coronaviruses (OC43, 229E, NL63, HKU1). Finally, we performed a search for pan-corona target sequences that are conserved among all these coronaviruses, including the new Omicron variant, that are able to replicate in humans. This survey may contribute to the design of effective, safe, and escape-proof antiviral strategies to prepare for future pandemics.
Collapse
Affiliation(s)
| | | | - Ben Berkhout
- Correspondence: (B.B.); (E.H.-C.); Tel.: +31-20-566-4822 (B.B.); +31-20-566-4865 (E.H.-C.)
| | - Elena Herrera-Carrillo
- Correspondence: (B.B.); (E.H.-C.); Tel.: +31-20-566-4822 (B.B.); +31-20-566-4865 (E.H.-C.)
| |
Collapse
|
3
|
Herrera-Carrillo E, Gao Z, Berkhout B. CRISPR therapy towards an HIV cure. Brief Funct Genomics 2021; 19:201-208. [PMID: 31711197 DOI: 10.1093/bfgp/elz021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Tools based on RNA interference (RNAi) and the recently developed clustered regularly short palindromic repeats (CRISPR) system enable the selective modification of gene expression, which also makes them attractive therapeutic reagents for combating HIV infection and other infectious diseases. Several parallels can be drawn between the RNAi and CRISPR-Cas9 platforms. An ideal RNAi or CRISPR-Cas9 therapeutic strategy for treating infectious or genetic diseases should exhibit potency, high specificity and safety. However, therapeutic applications of RNAi and CRISPR-Cas9 have been challenged by several major limitations, some of which can be overcome by optimal design of the therapy or the design of improved reagents. In this review, we will discuss some advantages and limitations of anti-HIV strategies based on RNAi and CRISPR-Cas9 with a focus on the efficiency, specificity, off-target effects and delivery methods.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Department of Medical Microbiology Laboratory of Experimental Virology Amsterdam UMC, AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Zongliang Gao
- Department of Medical Microbiology Laboratory of Experimental Virology Amsterdam UMC, AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Department of Medical Microbiology Laboratory of Experimental Virology Amsterdam UMC, AMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Mehmetoglu-Gurbuz T, Yeh R, Garg H, Joshi A. Combination gene therapy for HIV using a conditional suicidal gene with CCR5 knockout. Virol J 2021; 18:31. [PMID: 33516234 PMCID: PMC7847599 DOI: 10.1186/s12985-021-01501-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene therapy approaches using hematopoietic stem cells to generate an HIV resistant immune system have been shown to be successful. The deletion of HIV co-receptor CCR5 remains a viable strategy although co-receptor switching to CXCR4 remains a major pitfall. To overcome this, we designed a dual gene therapy strategy that incorporates a conditional suicide gene and CCR5 knockout (KO) to overcome the limitations of CCR5 KO alone. METHODS A two-vector system was designed that included an integrating lentiviral vector that expresses a HIV Tat dependent Thymidine Kinase mutant SR39 (TK-SR39) and GFP reporter gene. The second non-integrating lentiviral (NIL) vector expresses a CCR5gRNA-CRISPR/Cas9 cassette and HIV Tat protein. RESULTS Transduction of cells sequentially with the integrating followed by the NIL vector allows for insertion of the conditional suicide gene, KO of CCR5 and transient expression of GFP to enrich the modified cells. We used this strategy to modify TZM cells and generate a cell line that was resistant to CCR5 tropic viruses while permitting infection of CXCR4 tropic viruses which could be controlled via treatment with Ganciclovir. CONCLUSIONS Our study demonstrates proof of principle that a combination gene therapy for HIV is a viable strategy and can overcome the limitation of editing CCR5 gene alone.
Collapse
Affiliation(s)
- Tugba Mehmetoglu-Gurbuz
- Department of Molecular and Translational Medicine, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center, 5001 El Paso Dr, El Paso, TX, 79905, USA
| | - Rose Yeh
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Himanshu Garg
- Department of Molecular and Translational Medicine, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center, 5001 El Paso Dr, El Paso, TX, 79905, USA
| | - Anjali Joshi
- Department of Molecular and Translational Medicine, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center, 5001 El Paso Dr, El Paso, TX, 79905, USA.
| |
Collapse
|
5
|
Darcis G, Das AT, Berkhout B. Tackling HIV Persistence: Pharmacological versus CRISPR-Based Shock Strategies. Viruses 2018; 10:v10040157. [PMID: 29596334 PMCID: PMC5923451 DOI: 10.3390/v10040157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023] Open
Abstract
Jan Svoboda studied aspects of viral latency, in particular with respect to disease induction by avian RNA tumor viruses, which were later renamed as part of the extended retrovirus family. The course of retroviral pathogenesis is intrinsically linked to their unique property of integrating the DNA copy of the retroviral genome into that of the host cell, thus forming the provirus. Retroviral latency has recently become of major clinical interest to allow a better understanding of why we can effectively block the human immunodeficiency virus type 1 (HIV-1) in infected individuals with antiviral drugs, yet never reach a cure. We will discuss HIV-1 latency and its direct consequence—the formation of long-lasting HIV-1 reservoirs. We next focus on one of the most explored strategies in tackling HIV-1 reservoirs—the “shock and kill” strategy—which describes the broadly explored pharmacological way of kicking the latent provirus, with subsequent killing of the virus-producing cell by the immune system. We furthermore present how the clustered regularly interspaced palindromic repeats (CRISPR) and associated protein (Cas) system can be harnessed to reach the same objective by reactivating HIV-1 gene expression from latency. We will review the benefits and drawbacks of these different cure strategies.
Collapse
Affiliation(s)
- Gilles Darcis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Infectious Diseases Department, Liège University Hospital, 4000 Liege, Belgium.
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Scarborough RJ, Gatignol A. RNA Interference Therapies for an HIV-1 Functional Cure. Viruses 2017; 10:E8. [PMID: 29280961 PMCID: PMC5795421 DOI: 10.3390/v10010008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
HIV-1 drug therapies can prevent disease progression but cannot eliminate HIV-1 viruses from an infected individual. While there is hope that elimination of HIV-1 can be achieved, several approaches to reach a functional cure (control of HIV-1 replication in the absence of drug therapy) are also under investigation. One of these approaches is the transplant of HIV-1 resistant cells expressing anti-HIV-1 RNAs, proteins or peptides. Small RNAs that use RNA interference pathways to target HIV-1 replication have emerged as competitive candidates for cell transplant therapy and have been included in all gene combinations that have so far entered clinical trials. Here, we review RNA interference pathways in mammalian cells and the design of therapeutic small RNAs that use these pathways to target pathogenic RNA sequences. Studies that have been performed to identify anti-HIV-1 RNA interference therapeutics are also reviewed and perspectives on their use in combination gene therapy to functionally cure HIV-1 infection are provided.
Collapse
Affiliation(s)
- Robert J Scarborough
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A0G4, Canada.
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A0G4, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A0G4, Canada.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Highly active antiretroviral treatment has dramatically improved the prognosis for people living with HIV by preventing AIDS-related morbidity and mortality through profound suppression of viral replication. However, a long-lived viral reservoir persists in latently infected cells that harbor replication-competent HIV genomes. If therapy is discontinued, latently infected memory cells inevitably reactivate and produce infectious virus, resulting in viral rebound. The reservoir is the biggest obstacle to a cure of HIV. RECENT FINDINGS This review summarizes significant advances of the past year in the development of cellular and gene therapies for HIV cure. In particular, we highlight work done on suppression or disruption of HIV coreceptors, vectored delivery of antibodies and antibody-like molecules, T-cell therapies and HIV genome disruption. SUMMARY Several recent advancements in cellular and gene therapies have emerged at the forefront of HIV cure research, potentially having broad implications for the future of HIV treatment.
Collapse
|
8
|
Wang G, Zhao N, Berkhout B, Das AT. A Combinatorial CRISPR-Cas9 Attack on HIV-1 DNA Extinguishes All Infectious Provirus in Infected T Cell Cultures. Cell Rep 2016; 17:2819-2826. [PMID: 27974196 DOI: 10.1016/j.celrep.2016.11.057] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/07/2016] [Accepted: 11/18/2016] [Indexed: 01/24/2023] Open
Abstract
Current drug therapies effectively suppress HIV-1 replication but do not inactivate the provirus that persists in latent reservoirs. Recent studies have found that the guide RNA (gRNA)-directed CRISPR/Cas9 system can be used for sequence-specific attack on this proviral DNA. Although potent inhibition of virus replication was reported, HIV-1 can escape from a single antiviral gRNA by mutation of the target sequence. Here, we demonstrate that combinations of two antiviral gRNAs delay viral escape, and identify two gRNA combinations that durably block virus replication. When viral escape is prevented, repeated Cas9 cleavage leads to saturation of major mutations in the conserved target sequences that encode critical proteins. This hypermutation coincides with the loss of replication-competent virus as scored in sensitive co-cultures with unprotected cells, demonstrating complete virus inactivation. These results provide a proof-of-principle that HIV-1-infected cells can be functionally cured by dual-gRNA CRISPR/Cas9 treatment.
Collapse
Affiliation(s)
- Gang Wang
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Na Zhao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|