1
|
Li Z, Na Wu X, Jacquot A, Chaput V, Adamo M, Neuhäuser B, Straub T, Lejay L, Schulze WX. Phosphoregulation in the N-terminus of NRT2.1 affects nitrate uptake by controlling the interaction of NRT2.1 with NAR2.1 and kinase HPCAL1 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2127-2142. [PMID: 38066636 PMCID: PMC10967239 DOI: 10.1093/jxb/erad490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/06/2023] [Indexed: 03/28/2024]
Abstract
NRT2.1, the major high affinity nitrate transporter in roots, can be phosphorylated at five different sites within the N- and the C-terminus. Here, we characterized the functional relationship of two N-terminal phosphorylation sites, S21 and S28, in Arabidopsis. Based on a site-specific correlation network, we identified a receptor kinase (HPCAL1, AT5G49770), phosphorylating NRT2.1 at S21 and resulting in active nitrate uptake. HPCAL1 itself was regulated by phosphorylation at S839 and S870 within its kinase domain. In the active state, when S839 was dephosphorylated and S870 was phosphorylated, HPCAL1 was found to interact with the N-terminus of NRT2.1, mainly when S28 was dephosphorylated. Phosphorylation of NRT2.1 at S21 resulted in a reduced interaction of NRT2.1 with its activator NAR2.1, but nitrate transport activity remained. By contrast, phosphorylated NRT2.1 at S28 enhanced the interaction with NAR2.1, but reduced the interaction with HPCAL1. Here we identified HPCAL1 as the kinase affecting this phospho-switch through phosphorylation of NRT2.1 at S21.
Collapse
Affiliation(s)
- Zhi Li
- Department of Plant Systems Biology, University of Hohenheim, D-70593, Stuttgart, Germany
| | - Xu Na Wu
- Department of Plant Systems Biology, University of Hohenheim, D-70593, Stuttgart, Germany
| | - Aurore Jacquot
- BPMP, University Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Valentin Chaput
- BPMP, University Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Mattia Adamo
- BPMP, University Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Benjamin Neuhäuser
- Department of Crop Physiology, University of Hohenheim, D-70593, Stuttgart, Germany
| | - Tatsiana Straub
- Department of Plant Systems Biology, University of Hohenheim, D-70593, Stuttgart, Germany
| | - Laurence Lejay
- BPMP, University Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, D-70593, Stuttgart, Germany
| |
Collapse
|
2
|
Wu XN, Chu L, Xi L, Pertl-Obermeyer H, Li Z, Sklodowski K, Sanchez-Rodriguez C, Obermeyer G, Schulze WX. Sucrose-induced Receptor Kinase 1 is Modulated by an Interacting Kinase with Short Extracellular Domain. Mol Cell Proteomics 2019; 18:1556-1571. [PMID: 31147492 PMCID: PMC6683012 DOI: 10.1074/mcp.ra119.001336] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Sucrose as a product of photosynthesis is the major carbohydrate translocated from photosynthetic leaves to growing nonphotosynthetic organs such as roots and seeds. These growing tissues, besides carbohydrate supply, require uptake of water through aquaporins to enhance cell expansion during growth. Previous work revealed Sucrose Induced Receptor Kinase, SIRK1, to control aquaporin activity via phosphorylation in response to external sucrose stimulation. Here, we present the regulatory role of AT3G02880 (QSK1), a receptor kinase with a short external domain, in modulation of SIRK1 activity. Our results suggest that SIRK1 autophosphorylates at Ser-744 after sucrose treatment. Autophosphorylated SIRK1 then interacts with and transphosphorylates QSK1 and QSK2. Upon interaction with QSK1, SIRK1 phosphorylates aquaporins at their regulatory C-terminal phosphorylation sites. Consequently, in root protoplast swelling assays, the qsk1qsk2 mutant showed reduced water influx rates under iso-osmotic sucrose stimulation, confirming an involvement in the same signaling pathway as the receptor kinase SIRK1. Large-scale phosphoproteomics comparing single mutant sirk1, qsk1, and double mutant sirk1 qsk1 revealed that aquaporins were regulated by phosphorylation depending on an activated receptor kinase complex of SIRK1, as well as QSK1. QSK1 thereby acts as a coreceptor stabilizing and enhancing SIRK1 activity and recruiting substrate proteins, such as aquaporins.
Collapse
Affiliation(s)
- Xu Na Wu
- ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Liangcui Chu
- ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lin Xi
- ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Heidi Pertl-Obermeyer
- §Molecular Plant Biophysics and Biochemistry, Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Zhi Li
- ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Kamil Sklodowski
- ¶Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | | | - Gerhard Obermeyer
- §Molecular Plant Biophysics and Biochemistry, Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Waltraud X Schulze
- ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|