1
|
Mollerup IM, Bjørneset J, Krock B, Jensen TH, Galatius A, Dietz R, Teilmann J, van den Brand JMA, Osterhaus A, Kokotovic B, Lundholm N, Olsen MT. Did algal toxin and Klebsiella infections cause the unexplained 2007 mass mortality event in Danish and Swedish marine mammals? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169817. [PMID: 38184244 DOI: 10.1016/j.scitotenv.2023.169817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
An unusual mass mortality event (MME) of harbour seals (Phoca vitulina) and harbour porpoises (Phocoena phocoena) occurred in Denmark and Sweden in June 2007. Prior to this incident, the region had experienced two MMEs in harbour seals caused by Phocine Distemper Virus (PDV) in 1988 and 2002. Although epidemiology and symptoms of the 2007 MME resembled PDV, none of the animals examined for PDV tested positive. Thus, it has been speculated that another - yet unknown - pathogen caused the June 2007 MME. To shed new light on the likely cause of death, we combine previously unpublished veterinary examinations of harbour seals with novel analyses of algal toxins and algal monitoring data. All harbour seals subject to pathological examination showed pneumonia, but were negative for PDV, influenza and coronavirus. Histological analyses revealed septicaemia in multiple animals, and six animals tested positive for Klebsiella pneumonia. Furthermore, we detected the algal Dinophysis toxin DTX-1b (1-115 ng g-1) in five seals subject to toxicology, representing the first time DTX-1b has been detected in marine vertebrates. However, no animals tested positive for both Klebsiella and toxins. Thus, while our relatively small sample size prevent firm conclusions on causative agents, we speculate that the unexplained MME may have been caused by a chance incidence of multiple pathogens acting in parallel in June 2007, including Dinophysis toxin and Klebsiella. Our study illustrates the complexity of wildlife MMEs and highlights the need for thorough sampling during and after MMEs, as well as additional research on and monitoring of DTX-1b and other algal toxins in the region.
Collapse
Affiliation(s)
- Ida-Marie Mollerup
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Juni Bjørneset
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Trine Hammer Jensen
- Aalborg Zoo/Section of Biology and Environmental Science, University of Aalborg, Fredrik Bajers Vej 7, H, 9220 Aalborg, Denmark
| | - Anders Galatius
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Rune Dietz
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jonas Teilmann
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | - Albert Osterhaus
- Research Center Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | - Branko Kokotovic
- Reference Laboratory for Antimicrobial Resistance, Department of Bacteria, Parasites & Fungi, Statens Seruminstitut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark.
| | - Morten Tange Olsen
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
2
|
Abdulhussain AH, Cook KB, Turner AD, Lewis AM, Elsafi MA, Mayor DJ. The Influence of the Toxin Producing Dinoflagellate, Alexandrium catenella (1119/27), on the Feeding and Survival of the Marine Copepod, Acartia tonsa. HARMFUL ALGAE 2020; 98:101890. [PMID: 33129448 DOI: 10.1016/j.hal.2020.101890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Blooms of harmful algae are increasing globally, yet their impacts on copepods, an important link between primary producers and higher trophic levels, remain largely unknown. Algal toxins may have direct, negative effects on the survival of copepods. They may also indirectly affect copepod survival by deterring feeding and thus decreasing the availability of energy and nutritional resources. Here we present a series of short-term (24 h) experiments in which the cosmopolitan marine copepod, Acartia tonsa, was exposed to a range of concentrations of the toxic dinoflagellate, Alexandrium catenella (strain 1119/27, formerly Alexandrium tamarense), with and without the presence of alternative, non-toxic prey (Rhodomonas sp.). We also present the toxin profile concentrations for A. catenella. The survival and feeding of A. tonsa were not affected across the range of concentrations recorded for A. catenella in the field; increased mortality of A. tonsa was only discernible when A. catenella was present at concentrations that exceed their reported environmental concentrations by two orders of magnitude. The observed lethal median concentration (LC50) for A. tonsa exposed to A. catenella was 12.45 ng STX eq L-1. We demonstrate that A. tonsa is capable of simultaneously ingesting both toxic and non-toxic algae, but increases clearance rates towards non-toxic prey as the proportional abundance of toxic A. catenella increases. The ability to actively select non-toxic algae whilst also ingesting toxic algae suggests that consumption of the latter does not cause physical incapacitation and thus does not affect ingestion in A. tonsa. This work shows that short-term exposure to toxic A. catenella is unlikely to elicit major effects on the grazing or survival of A. tonsa. However, more work is needed to understand the longer-term and sub-lethal effects of toxic algae on marine copepods.
Collapse
Affiliation(s)
- Ali H Abdulhussain
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, United Kingdom; Department of Marine Science, College of Science, Kuwait University, Kuwait City, Kuwait.
| | - Kathryn B Cook
- National Oceanography Centre, Southampton, SO14 3ZH, United Kingdom
| | - Andrew D Turner
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Barrack Rd, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Adam M Lewis
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Barrack Rd, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Mohamed A Elsafi
- Oceanography Department, Faculty of Science, Alexandria University, Egypt
| | - Daniel J Mayor
- National Oceanography Centre, Southampton, SO14 3ZH, United Kingdom
| |
Collapse
|