1
|
Rogala S, Ali T, Melissari MT, Währisch S, Schuster P, Sarre A, Emídio RC, Boettger T, Rogg EM, Kaur J, Krishnan J, Dumbović G, Dimmeler S, Ounzain S, Pedrazzini T, Herrmann BG, Grote P. The lncRNA Sweetheart regulates compensatory cardiac hypertrophy after myocardial injury in murine males. Nat Commun 2023; 14:7024. [PMID: 37919291 PMCID: PMC10622434 DOI: 10.1038/s41467-023-42760-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
After myocardial infarction in the adult heart the remaining, non-infarcted tissue adapts to compensate the loss of functional tissue. This adaptation requires changes in gene expression networks, which are mostly controlled by transcription regulating proteins. Long non-coding transcripts (lncRNAs) are taking part in fine-tuning such gene programs. We describe and characterize the cardiomyocyte specific lncRNA Sweetheart RNA (Swhtr), an approximately 10 kb long transcript divergently expressed from the cardiac core transcription factor coding gene Nkx2-5. We show that Swhtr is dispensable for normal heart development and function but becomes essential for the tissue adaptation process after myocardial infarction in murine males. Re-expressing Swhtr from an exogenous locus rescues the Swhtr null phenotype. Genes that depend on Swhtr after cardiac stress are significantly occupied and therefore most likely regulated by NKX2-5. The Swhtr transcript interacts with NKX2-5 and disperses upon hypoxic stress in cardiomyocytes, indicating an auxiliary role of Swhtr for NKX2-5 function in tissue adaptation after myocardial injury.
Collapse
Affiliation(s)
- Sandra Rogala
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596, Frankfurt am Main, Germany
| | - Tamer Ali
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596, Frankfurt am Main, Germany
- Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Maria-Theodora Melissari
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sandra Währisch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany
| | - Peggy Schuster
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne Medical School, Lausanne, Switzerland
| | - Rebeca Cordellini Emídio
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Thomas Boettger
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, 61231, Bad Nauheim, Germany
| | - Eva-Maria Rogg
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jaskiran Kaur
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jaya Krishnan
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Gabrijela Dumbović
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Samir Ounzain
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
- HAYA Therapeutics, Rte de la Corniche 6, 1066, Lausanne, Switzerland
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany
| | - Phillip Grote
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Efficient method for generating homozygous embryonic stem cells in mice. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.1.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
3
|
The Hippo pathway component Wwc2 is a key regulator of embryonic development and angiogenesis in mice. Cell Death Dis 2021; 12:117. [PMID: 33483469 PMCID: PMC7822818 DOI: 10.1038/s41419-021-03409-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/27/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
The WW-and-C2-domain-containing (WWC) protein family is involved in the regulation of cell differentiation, cell proliferation, and organ growth control. As upstream components of the Hippo signaling pathway, WWC proteins activate the Large tumor suppressor (LATS) kinase that in turn phosphorylates Yes-associated protein (YAP) and its paralog Transcriptional coactivator-with-PDZ-binding motif (TAZ) preventing their nuclear import and transcriptional activity. Inhibition of WWC expression leads to downregulation of the Hippo pathway, increased expression of YAP/TAZ target genes and enhanced organ growth. In mice, a ubiquitous Wwc1 knockout (KO) induces a mild neurological phenotype with no impact on embryogenesis or organ growth. In contrast, we could show here that ubiquitous deletion of Wwc2 in mice leads to early embryonic lethality. Wwc2 KO embryos display growth retardation, a disturbed placenta development, impaired vascularization, and finally embryonic death. A whole-transcriptome analysis of embryos lacking Wwc2 revealed a massive deregulation of gene expression with impact on cell fate determination, cell metabolism, and angiogenesis. Consequently, a perinatal, endothelial-specific Wwc2 KO in mice led to disturbed vessel formation and vascular hypersprouting in the retina. In summary, our data elucidate a novel role for Wwc2 as a key regulator in early embryonic development and sprouting angiogenesis in mice.
Collapse
|
4
|
Posfai E, Schell JP, Janiszewski A, Rovic I, Murray A, Bradshaw B, Yamakawa T, Pardon T, El Bakkali M, Talon I, De Geest N, Kumar P, To SK, Petropoulos S, Jurisicova A, Pasque V, Lanner F, Rossant J. Evaluating totipotency using criteria of increasing stringency. Nat Cell Biol 2021. [PMID: 33420491 DOI: 10.1101/2020.1103.1102.972893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Totipotency is the ability of a single cell to give rise to all of the differentiated cell types that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies on a variety of assays of variable stringency. Here, we describe criteria to define totipotency. We explain how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in mice, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbour increased totipotent potential relative to conventional embryonic stem cells under in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Eszter Posfai
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - John Paul Schell
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Adrian Janiszewski
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Isidora Rovic
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Alexander Murray
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Bradshaw
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tatsuya Yamakawa
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tine Pardon
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Mouna El Bakkali
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Irene Talon
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Natalie De Geest
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Pankaj Kumar
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - San Kit To
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Andrea Jurisicova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Departments of Obstetrics and Gynecology and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Ming Wai Lau Center for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Posfai E, Schell JP, Janiszewski A, Rovic I, Murray A, Bradshaw B, Yamakawa T, Pardon T, El Bakkali M, Talon I, De Geest N, Kumar P, To SK, Petropoulos S, Jurisicova A, Pasque V, Lanner F, Rossant J. Evaluating totipotency using criteria of increasing stringency. Nat Cell Biol 2021; 23:49-60. [PMID: 33420491 DOI: 10.1038/s41556-020-00609-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Totipotency is the ability of a single cell to give rise to all of the differentiated cell types that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies on a variety of assays of variable stringency. Here, we describe criteria to define totipotency. We explain how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in mice, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbour increased totipotent potential relative to conventional embryonic stem cells under in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Eszter Posfai
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - John Paul Schell
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Adrian Janiszewski
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Isidora Rovic
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Alexander Murray
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Bradshaw
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tatsuya Yamakawa
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tine Pardon
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Mouna El Bakkali
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Irene Talon
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Natalie De Geest
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Pankaj Kumar
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - San Kit To
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Andrea Jurisicova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Departments of Obstetrics and Gynecology and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Ming Wai Lau Center for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Jing Y, Li L, Li Y, Ouyang Y, Sun Q, Zhang C, Li R. Embryo quality, and not chromosome nondiploidy, affects mitochondrial DNA content in mouse blastocysts. J Cell Physiol 2018; 234:10481-10488. [PMID: 30480815 DOI: 10.1002/jcp.27713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Ying Jing
- Reproductive Medicine Center, The People's Hospital of Zhengzhou University Zhengzhou China
- Reproductive Medicine Center, The People's Hospital of Henan Province Zhengzhou China
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
| | - Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
| | - Yuan‐Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
| | - Ying‐Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
| | - Qing‐Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
| | - Cui‐Lian Zhang
- Reproductive Medicine Center, The People's Hospital of Zhengzhou University Zhengzhou China
- Reproductive Medicine Center, The People's Hospital of Henan Province Zhengzhou China
| | - Rong Li
- Department of Obstetrics and Gynecology Center for Reproductive Medicine, Peking University Third Hospital Beijing China
| |
Collapse
|
7
|
Wang XJ, Qiao Y, Xiao MM, Wang L, Chen J, Lv W, Xu L, Li Y, Wang Y, Tan MD, Huang C, Li J, Zhao TC, Hou Z, Jing N, Chin YE. Opposing Roles of Acetylation and Phosphorylation in LIFR-Dependent Self-Renewal Growth Signaling in Mouse Embryonic Stem Cells. Cell Rep 2017; 18:933-946. [PMID: 28122243 DOI: 10.1016/j.celrep.2016.12.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/25/2016] [Accepted: 12/22/2016] [Indexed: 11/27/2022] Open
Abstract
LIF promotes self-renewal of mouse embryonic stem cells (mESCs), and in its absence, the cells differentiate. LIF binds to the LIF receptor (LIFR) and activates the JAK-STAT3 pathway, but it remains unknown how the receptor complex triggers differentiation or self-renewal. Here, we report that the LIFR cytoplasmic domain contains a self-renewal domain within the juxtamembrane region and a differentiation domain within the C-terminal region. The differentiation domain contains four SPXX repeats that are phosphorylated by MAPK to restrict STAT3 activation; the self-renewal domain is characterized by a 3K motif that is acetylated by p300. In mESCs, acetyl-LIFR undergoes homodimerization, leading to STAT3 hypo- or hyper-activation depending on the presence or absence of gp130. LIFR-activated STAT3 restricts differentiation via cytokine induction. Thus, LIFR acetylation and serine phosphorylation differentially promote stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Xiong-Jun Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China; Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yunbo Qiao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; iHuman Institute, Shanghai Tech University, 99 Haike Road, Shanghai 201210, China
| | - Minzhe M Xiao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Lingbo Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jun Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenjian Lv
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Li Xu
- Department of Signal Transduction, School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yan Li
- Department of Signal Transduction, School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yumei Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Ming-Dian Tan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Chao Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI 02908, USA
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| | - Y Eugene Chin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
8
|
Sudheer S, Liu J, Marks M, Koch F, Anurin A, Scholze M, Senft AD, Wittler L, Macura K, Grote P, Herrmann BG. Different Concentrations of FGF Ligands, FGF2 or FGF8 Determine Distinct States of WNT-Induced Presomitic Mesoderm. Stem Cells 2016; 34:1790-800. [DOI: 10.1002/stem.2371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/07/2016] [Accepted: 03/03/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Smita Sudheer
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU; United Kingdom
| | - Jinhua Liu
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Matthias Marks
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Frederic Koch
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Anna Anurin
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
- Department of Biology; Chemistry and Pharmacy, Free University Berlin; Berlin Germany
| | - Manuela Scholze
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Anna Dorothea Senft
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE; United Kingdom
| | - Lars Wittler
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Karol Macura
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Phillip Grote
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main; Germany
| | - Bernhard G. Herrmann
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| |
Collapse
|