1
|
Silvestri I, Manigrasso J, Andreani A, Brindani N, Mas C, Reiser JB, Vidossich P, Martino G, McCarthy AA, De Vivo M, Marcia M. Targeting the conserved active site of splicing machines with specific and selective small molecule modulators. Nat Commun 2024; 15:4980. [PMID: 38898052 PMCID: PMC11187226 DOI: 10.1038/s41467-024-48697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
The self-splicing group II introns are bacterial and organellar ancestors of the nuclear spliceosome and retro-transposable elements of pharmacological and biotechnological importance. Integrating enzymatic, crystallographic, and simulation studies, we demonstrate how these introns recognize small molecules through their conserved active site. These RNA-binding small molecules selectively inhibit the two steps of splicing by adopting distinctive poses at different stages of catalysis, and by preventing crucial active site conformational changes that are essential for splicing progression. Our data exemplify the enormous power of RNA binders to mechanistically probe vital cellular pathways. Most importantly, by proving that the evolutionarily-conserved RNA core of splicing machines can recognize small molecules specifically, our work provides a solid basis for the rational design of splicing modulators not only against bacterial and organellar introns, but also against the human spliceosome, which is a validated drug target for the treatment of congenital diseases and cancers.
Collapse
Affiliation(s)
- Ilaria Silvestri
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
- Institute of Crystallography, National Research Council, Via Vivaldi 43, 81100, Caserta, Italy
| | - Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alessandro Andreani
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Nicoletta Brindani
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Caroline Mas
- Univ. Grenoble Alpes, CNRS, CEA, EMBL, ISBG, F-38000, Grenoble, France
| | | | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Gianfranco Martino
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Andrew A McCarthy
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
| |
Collapse
|
2
|
Marcia M, Manigrasso J, De Vivo M. Finding the Ion in the RNA-Stack: Can Computational Models Accurately Predict Key Functional Elements in Large Macromolecular Complexes? J Chem Inf Model 2021; 61:2511-2515. [PMID: 34133879 PMCID: PMC8278382 DOI: 10.1021/acs.jcim.1c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This viewpoint discusses the predictive power and impact of computational analyses and simulations to gain prospective, experimentally supported mechanistic insights into complex biological systems. Remarkably, two newly resolved cryoEM structures have confirmed the previous, and independent, prediction of the precise localization and dynamics of key catalytic ions in megadalton-large spliceosomal complexes. This outstanding outcome endorses a prominent synergy of computational and experimental methods in the prospective exploration of such large multicomponent biosystems.
Collapse
Affiliation(s)
- Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble 38042, France
| | - Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
3
|
Chillón I, Marcia M. The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Crit Rev Biochem Mol Biol 2020; 55:662-690. [PMID: 33043695 DOI: 10.1080/10409238.2020.1828259] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) are recently-discovered transcripts that regulate vital cellular processes and are crucially connected to diseases. Despite their unprecedented molecular complexity, it is emerging that lncRNAs possess distinct structural motifs. Remarkably, the 3D shape and topology of full-length, native lncRNAs have been visualized for the first time in the last year. These studies reveal that lncRNA structures dictate lncRNA functions. Here, we review experimentally determined lncRNA structures and emphasize that lncRNA structural characterization requires synergistic integration of computational, biochemical and biophysical approaches. Based on these emerging paradigms, we discuss how to overcome the challenges posed by the complex molecular architecture of lncRNAs, with the goal of obtaining a detailed understanding of lncRNA functions and molecular mechanisms in the future.
Collapse
Affiliation(s)
- Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| |
Collapse
|
4
|
Manigrasso J, Chillón I, Genna V, Vidossich P, Somarowthu S, Pyle AM, De Vivo M, Marcia M. Visualizing group II intron dynamics between the first and second steps of splicing. Nat Commun 2020; 11:2837. [PMID: 32503992 PMCID: PMC7275048 DOI: 10.1038/s41467-020-16741-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
Group II introns are ubiquitous self-splicing ribozymes and retrotransposable elements evolutionarily and chemically related to the eukaryotic spliceosome, with potential applications as gene-editing tools. Recent biochemical and structural data have captured the intron in multiple conformations at different stages of catalysis. Here, we employ enzymatic assays, X-ray crystallography, and molecular simulations to resolve the spatiotemporal location and function of conformational changes occurring between the first and the second step of splicing. We show that the first residue of the highly-conserved catalytic triad is protonated upon 5’-splice-site scission, promoting a reversible structural rearrangement of the active site (toggling). Protonation and active site dynamics induced by the first step of splicing facilitate the progression to the second step. Our insights into the mechanism of group II intron splicing parallels functional data on the spliceosome, thus reinforcing the notion that these evolutionarily-related molecular machines share the same enzymatic strategy. Group II introns are self-splicing ribozymes. Here, the authors employ enzymatic assay, X-ray crystallography and molecular dynamics simulations to show that protonation of the group II intron catalytic triad plays an important role for the transition from the first to the second step of splicing.
Collapse
Affiliation(s)
- Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Vito Genna
- Department of Structural and Computational Biology, Institute for Research in Biomedicine (IRB), Parc Científic de Barcelona, C/ Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Srinivas Somarowthu
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, New Haven, CT, 06511, USA.,Department of Chemistry, Yale University, New Haven, CT, 06511, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
| |
Collapse
|
5
|
Uroda T, Chillón I, Annibale P, Teulon JM, Pessey O, Karuppasamy M, Pellequer JL, Marcia M. Visualizing the functional 3D shape and topography of long noncoding RNAs by single-particle atomic force microscopy and in-solution hydrodynamic techniques. Nat Protoc 2020; 15:2107-2139. [PMID: 32451442 DOI: 10.1038/s41596-020-0323-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 11/09/2022]
Abstract
Long noncoding RNAs (lncRNAs) are recently discovered transcripts that regulate vital cellular processes, such as cellular differentiation and DNA replication, and are crucially connected to diseases. Although the 3D structures of lncRNAs are key determinants of their function, the unprecedented molecular complexity of lncRNAs has so far precluded their 3D structural characterization at high resolution. It is thus paramount to develop novel approaches for biochemical and biophysical characterization of these challenging targets. Here, we present a protocol that integrates non-denaturing lncRNA purification with in-solution hydrodynamic analysis and single-particle atomic force microscopy (AFM) imaging to produce highly homogeneous lncRNA preparations and visualize their 3D topology at ~15-Å resolution. Our protocol is suitable for imaging lncRNAs in biologically active conformations and for measuring structural defects of functionally inactive mutants that have been identified by cell-based functional assays. Once optimized for the specific target lncRNA of choice, our protocol leads from cloning to AFM imaging within 3-4 weeks and can be implemented using state-of-the-art biochemical and biophysical instrumentation by trained researchers familiar with RNA handling and supported by AFM and small-angle X-ray scattering (SAXS) experts.
Collapse
Affiliation(s)
- Tina Uroda
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | | | - Jean-Marie Teulon
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Ombeline Pessey
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | | | - Jean-Luc Pellequer
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France.
| |
Collapse
|