1
|
Lee Y, Lee R, Kim J, Han YH, Hunter C, Park J. Comparative analysis of changes in immune cell in the chicken spleen across different ages using flow cytometry. BMC Vet Res 2024; 20:429. [PMID: 39334332 PMCID: PMC11438354 DOI: 10.1186/s12917-024-04287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Concurrent emerging and reemerging avian infectious diseases cause multiple risk factors in poultry. A body amount studies attempted to understand pathogen-associated immunity in chickens. Recent research has made progress in identifying immune functions in chicken, there are still gaps in knowledge, especially regarding immune responses during infectious diseases. A deeper understanding in chicken immune system is critical for improving disease control strategies and vaccine development. RESULTS This study proposes analytical method for chicken splenocytes, enabling the tracking changes in T cells, monocytes, and B cells across three ages. Optimized lymphocyte-activating conditions were suggested using concanavalin A and chicken interleikin-2, which facilitate immune cell activation and proliferation. Next, splenocytes from embryonic day 18, day 5, and day 30 were compared using surface markers and flow cytometry analysis. We observed an increase in T cell subsets, including activated T cells (CD4+CD44+ and CD8+CD44+), and B cells, along with a reduced monocyte population after hatching. However, morphological changes and genetic expression of functional immune molecules were limited. CONCLUSIONS The present findings on chicken immune system development offer valuable insights into the avian immune system, including analytical methods and the phenotypic and functional changes in immune cells. Updated immune-boosting strategies during the early stages of life are crucial for developing preventive measures against major infectious diseases in the poultry industry.
Collapse
Affiliation(s)
- Yeonjae Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Rangyeon Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Jieun Kim
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
- College of Biomedicine Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yong-Hyun Han
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
- College of Parmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Christopher Hunter
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jeongho Park
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea.
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea.
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
2
|
Lim S, J F van Son G, Wisma Eka Yanti NL, Andersson-Rolf A, Willemsen S, Korving J, Lee HG, Begthel H, Clevers H. Derivation of functional thymic epithelial organoid lines from adult murine thymus. Cell Rep 2024; 43:114019. [PMID: 38551965 DOI: 10.1016/j.celrep.2024.114019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Thymic epithelial cells (TECs) orchestrate T cell development by imposing positive and negative selection on thymocytes. Current studies on TEC biology are hampered by the absence of long-term ex vivo culture platforms, while the cells driving TEC self-renewal remain to be identified. Here, we generate long-term (>2 years) expandable 3D TEC organoids from the adult mouse thymus. For further analysis, we generated single and double FoxN1-P2A-Clover, Aire-P2A-tdTomato, and Cldn4-P2A-tdTomato reporter lines by CRISPR knockin. Single-cell analyses of expanding clonal organoids reveal cells with bipotent stem/progenitor phenotypes. These clonal organoids can be induced to express Foxn1 and to generate functional cortical- and Aire-expressing medullary-like TECs upon RANK ligand + retinoic acid treatment. TEC organoids support T cell development from immature thymocytes in vitro as well as in vivo upon transplantation into athymic nude mice. This organoid-based platform allows in vitro study of TEC biology and offers a potential strategy for ex vivo T cell development.
Collapse
Affiliation(s)
- Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Gijs J F van Son
- Oncode Institute, Utrecht, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, the Netherlands
| | - Ni Luh Wisma Eka Yanti
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Sam Willemsen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, the Netherlands.
| |
Collapse
|
3
|
Li W, Bai Z, Liu J, Tang Y, Yin C, Jin M, Mu L, Li X. Mitochondrial ROS-dependent CD4 +PD-1 +T cells are pathological expansion in patients with primary immune thrombocytopenia. Int Immunopharmacol 2023; 122:110597. [PMID: 37413931 DOI: 10.1016/j.intimp.2023.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVE Aberrant-activated T cells, especially CD4+T cells, play a crucial part in the pathogenetic progress of immune thrombocytopenia (ITP). PD-1-mediated signals play a negative part in the activation of CD4+T cells. However, knowledge is limited on the pathogenic characteristics and function of CD4+PD-1+T cells in ITP. MATERIALS AND METHODS The frequency and phenotype including cell activation, apoptosis, and cytokine production of CD4+PD-1+T cells were evaluated by flow cytometry. PD-1 Ligation Assay was performed to assess the function of PD-1 pathway in CD4+T cells. Mitochondrial reactive oxygen species (mtROS) were detected by MitoSOX Red probe. RESULTS Compared with healthy controls (HC), the frequencies of CD4+PD-1+T cells were significantly increased in ITP patients. However, these cells are not exhausted despite PD-1 expression. Besides retaining cytokine-producing potential, these CD4+PD-1+T cells also had a possible B-cell helper function including expressing ICOS, CD84, and CD40L. Moreover, the CD4+PD-1+T cell subset contained higher levels of mitochondrial ROS than CD4+PD-1-T cell subset in patients with ITP. And mtROS inhibition could reduce the secretion of the inflammatory cytokines and regulate the function of CD4+PD-1+T cells. Upon in-vitro T cell receptor (TCR) stimulation of CD4+T cells in the presence of plate-bound PD-L1 fusion protein (PD-L1-Ig), CD4+T cells from ITP patients appeared resistant to such PD-1-mediated inhibition of interferon (IFN)-γ secretion. CONCLUSIONS The CD4+PD-1+T cells were more abundant in patients with ITP. Additionally, this CD4+PD-1+T cell subset may be a potential etiology of ITP and a potential immune therapeutic target for ITP patients in the future.
Collapse
Affiliation(s)
- Weiping Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China; Department of Hematology, Second Hospital of Dalian Medical University, Liaoning, China
| | - Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Jiaqing Liu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yawei Tang
- Department of Clinical Laboratory, Second Hospital of Dalian Medical University, Liaoning, China
| | - Chunlai Yin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Minli Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Lijun Mu
- Department of Hematology, Second Hospital of Dalian Medical University, Liaoning, China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.
| |
Collapse
|
4
|
Kenney D, Harly C. Purification of Bone Marrow Precursors to T Cells and ILCs. Methods Mol Biol 2023; 2580:211-232. [PMID: 36374460 DOI: 10.1007/978-1-0716-2740-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T cells and innate lymphoid cells (ILCs) share expression of many key transcription factors during development and at mature stage, resulting in striking functional similarities between these lineages. Taking into account ILC contribution is thus necessary to appreciate T cell functions during immune responses. Furthermore, understanding ILC development and functions helps to understand T cells. Here we provide methods and protocols to isolate pure populations of multipotent precursors to T cells and innate lymphoid cells (ILCs) from adult mouse bone marrow, using flow cytometric sorting. These include precursors to all lymphocytes (viz., LMPPs and ALPs) and multipotent precursors to ILCs that have been recently refined (viz., specified EILPs, committed EILPs, and ILCPs).
Collapse
Affiliation(s)
- Devin Kenney
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Christelle Harly
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France.
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| |
Collapse
|
5
|
Deguise MO, De Repentigny Y, McFall E, Auclair N, Sad S, Kothary R. Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice. Hum Mol Genet 2017; 26:801-819. [PMID: 28108555 PMCID: PMC5409095 DOI: 10.1093/hmg/ddw434] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/16/2016] [Indexed: 01/21/2023] Open
Abstract
Spinal muscular atrophy (SMA) has long been solely considered a neurodegenerative disorder. However, recent work has highlighted defects in many other cell types that could contribute to disease aetiology. Interestingly, the immune system has never been extensively studied in SMA. Defects in lymphoid organs could exacerbate disease progression by neuroinflammation or immunodeficiency. Smn depletion led to severe alterations in the thymus and spleen of two different mouse models of SMA. The spleen from Smn depleted mice was dramatically smaller at a very young age and its histological architecture was marked by mislocalization of immune cells in the Smn2B/- model mice. In comparison, the thymus was relatively spared in gross morphology but showed many histological alterations including cortex thinning in both mouse models at symptomatic ages. Thymocyte development was also impaired as evidenced by abnormal population frequencies in the Smn2B/- thymus. Cytokine profiling revealed major changes in different tissues of both mouse models. Consistent with our observations, we found that survival motor neuron (Smn) protein levels were relatively high in lymphoid organs compared to skeletal muscle and spinal cord during postnatal development in wild type mice. Genetic introduction of one copy of the human SMN2 transgene was enough to rescue splenic and thymic defects in Smn2B/- mice. Thus, Smn is required for the normal development of lymphoid organs, and altered immune function may contribute to SMA disease pathogenesis.
Collapse
Affiliation(s)
- Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine.,Centre for Neuromuscular Disease, University of Ottawa
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Centre for Neuromuscular Disease, University of Ottawa
| | - Emily McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Centre for Neuromuscular Disease, University of Ottawa
| | - Nicole Auclair
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada, K1N 9B4
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine.,Centre for Neuromuscular Disease, University of Ottawa.,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
6
|
Gebert C, Correia L, Li Z, Petrie HT, Love PE, Pfeifer K. Chromosome choice for initiation of V-(D)-J recombination is not governed by genomic imprinting. Immunol Cell Biol 2017; 95:473-477. [PMID: 28244489 PMCID: PMC5788196 DOI: 10.1038/icb.2017.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/04/2023]
Abstract
V-(D)-J recombination generates the antigen receptor diversity necessary for immune cell function, while allelic exclusion ensures that each cell expresses a single antigen receptor. V-(D)-J recombination of the Ig, Tcrb, Tcrg and Tcrd antigen receptor genes is ordered and sequential so that only one allele generates a productive rearrangement. The mechanism controlling sequential rearrangement of antigen receptor genes, in particular how only one allele is selected to initiate recombination while at least temporarily leaving the other intact, remains unresolved. Genomic imprinting, a widespread phenomenon wherein maternal or paternal allele inheritance determines allele activity, could represent a regulatory mechanism for controlling sequential V-(D)-J rearrangement. We used strain-specific single-nucleotide polymorphisms within antigen receptor genes to determine if maternal vs paternal inheritance could underlie chromosomal choice for the initiation of recombination. We found no parental chromosomal bias in the initiation of V-(D)-J recombination in T or B cells, eliminating genomic imprinting as a potential regulator for this tightly regulated process.
Collapse
Affiliation(s)
- Claudia Gebert
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Lauren Correia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Zhenhu Li
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 USA
| | | | - Paul E Love
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Karl Pfeifer
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 USA
| |
Collapse
|