1
|
Witarto BS, Visuddho V, Aldian FM, Atmaja MSS, Ariyanto MV, Witarto AP, Wungu CDK, Susilo H, Alsagaff MY, Rohman MS. Blood-based circulating microRNAs as diagnostic biomarkers for subclinical carotid atherosclerosis: A systematic review and meta-analysis with bioinformatics analysis. Diabetes Metab Syndr 2023; 17:102860. [PMID: 37742360 DOI: 10.1016/j.dsx.2023.102860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Atherosclerosis in carotid arteries can remain clinically undetected in its early development until an acute cerebrovascular event such as stroke emerges. Recently, microRNAs (miRNAs) circulating in blood have emerged as potential diagnostic biomarkers, but their performance in detecting subclinical carotid atherosclerosis has yet to be systematically researched. AIM To investigate the diagnostic performance of circulating miRNAs in detecting subclinical carotid atherosclerosis. METHODS We systematically searched five electronic databases from inception to July 23, 2022. Subclinical carotid atherosclerosis was defined using carotid intima-media thickness (CIMT). Diagnostic accuracy parameters and correlation coefficients were pooled. A gene network visualisation and enrichment bioinformatics analysis were additionally conducted to search for potential target genes and pathway regulations of the miRNAs. RESULTS Fifteen studies (15 unique miRNAs) comprising 2542 subjects were identified. Circulating miRNAs had a pooled sensitivity of 85% (95% CI 80%-89%), specificity of 84% (95% CI 78%-88%), positive likelihood ratio of 5.19 (95% CI 3.97-6.80), negative likelihood ratio of 0.18 (95% CI 0.13-0.23), diagnostic odds ratio of 29.48 (95% CI 21.15-41.11), and area under the summary receiver operating characteristic curve of 0.91 (95% CI 0.88-0.93), with a strong correlation to CIMT (pooled coefficient 0.701; 95% CI 0.664-0.731). Bioinformatics analysis revealed a major role of the miRNAs, as shown by their relation with CCND1, KCTD15, SPARC, WWTR1, VEGFA genes, and multiple pathways involved in the pathogenesis of carotid atherosclerosis. CONCLUSION Circulating miRNAs had excellent accuracy in detecting subclinical carotid atherosclerosis, suggesting their utilisation as novel diagnostic tools.
Collapse
Affiliation(s)
| | - Visuddho Visuddho
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fan Maitri Aldian
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | | | | - Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.
| | - Hendri Susilo
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia; Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia.
| | - Mochamad Yusuf Alsagaff
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia; Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
2
|
Yang W, Jo JI, Tabata Y. A Reverse Transfection System with Cationized Gelatin Nanospheres Incorporating Molecular Beacon as a Tool to Visualize Cell Function. ACS APPLIED BIO MATERIALS 2023; 6:3363-3375. [PMID: 36640270 DOI: 10.1021/acsabm.2c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The objective of this research is to design a reverse transfection system with cationized gelatin nanospheres (cGNS) incorporating a molecular beacon (MB) to visualize a cell function. The cGNS were prepared by the conventional coacervation method. The MB as an imaging probe was incorporated into the cGNS to prepare imaging complexes (cGNSMB). The conventional transfection of 2D culture was performed by incubating MC3T3 cells in the medium containing cGNSMB. The reverse transfection was done by incubating cells on the substrate which had been precoated with both gelatin and cGNSMB. Significantly higher internalization efficiency and fluorescence intensity of cGNSMB were observed in the reverse transfection system than in the conventional one. To apply this system for visualization of 3D cell aggregate, gelatin microspheres (GMS) were prepared, while cGNSMB were bound on the GMS to prepare the GMS-cGNSMB of a cell scaffold. Then the cells were incubated with GMS-cGNSMB to form 3D cell aggregates. On the other hand, as a control, the conventional transfection of 3D culture was performed by incubating the cell aggregates formed with the medium containing cGNSMB. Homogeneous fluorescence of MB from the inside to the outside of aggregates was observed for the reverse transfection group. However, for the conventional transfection, the fluorescence was observed only around the surface of cell aggregates. It is concluded that the reverse transfection system with cGNS incorporating MB is promising to visualize the cell function of a higher transfection efficiency for the 2D culture and in a homogeneous manner for the 3D culture.
Collapse
Affiliation(s)
- Wenxuan Yang
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto606-8507, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto606-8507, Japan
| |
Collapse
|
3
|
Sun YF, Han CH, Han J, Zhou XY, Hu MH, Shen JL. Two Dy(III) complexes: Crystal structures and treatment activity on cardiovascular disease. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Jiang X, Kuang G, Gong X, Jiang R, Xie T, Tie H, Wu S, Wang T, Wan J, Wang B. Glycyrrhetinic acid pretreatment attenuates liver ischemia/reperfusion injury via inhibiting TLR4 signaling cascade in mice. Int Immunopharmacol 2019; 76:105870. [PMID: 31493667 DOI: 10.1016/j.intimp.2019.105870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022]
Abstract
Glycyrrhetinic acid (GA), the main bioactive substances of glycyrrhiza uralensis Fisch, has been reported to exhibit hepatoprotective and anti-inflammatory properties. However, the effects and underlying mechanisms of GA in liver ischemia/reperfusion (I/R) injury remain elusive. In this study, mice were pretreated with GA (100 mg/kg) three times a day by gavage prior to I/R injury, and then hepatic histopathological damages, biochemical parameters and inflammatory molecules were evaluated. We found that mice performed with liver I/R showed a significantly increase in plasma aminotransferase (ALT), aspartate aminotransferase (AST), liver cell apoptosis and infiltration of neutrophils compared with the control group. GA pretreatment notably improved liver function, histopathology of liver tissues, and lowered liver cell apoptosis and infiltration of neutrophils. Besides, further analysis indicated that GA pretreatment reduced I/R-induced expression of extracellular HMGB1, inhibited activation of TLR4 and following phosphorylation of IRAK1, ERK, P38 and NF-κB, and attenuated TNF-α and IL-1β production. These data suggested that GA protected against liver I/R injury through a HMGB1-TLR4 signaling pathway and it might be a promising drug for future clinical use in liver transplantation.
Collapse
Affiliation(s)
- Xujie Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ge Kuang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Tianjun Xie
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Hongtao Tie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shengwang Wu
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Ting Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China.
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Yang C, Lu M, Chen W, He Z, Hou X, Feng M, Zhang H, Bo T, Zhou X, Yu Y, Zhang H, Zhao M, Wang L, Yu C, Gao L, Jiang W, Zhang Q, Zhao J. Thyrotropin aggravates atherosclerosis by promoting macrophage inflammation in plaques. J Exp Med 2019; 216:1182-1198. [PMID: 30940720 PMCID: PMC6504213 DOI: 10.1084/jem.20181473] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/07/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
The increased cardiovascular risk in subclinical hypothyroidism has traditionally been attributed to the associated metabolic disorders. This paper, however, revealed that TSH can aggravate atherosclerosis by promoting macrophage inflammation in the plaque, which deepens our understanding of the significance of TSH elevation in subclinical hypothyroidism. Subclinical hypothyroidism is associated with cardiovascular diseases, yet the underlying mechanism remains largely unknown. Herein, in a common population (n = 1,103), TSH level was found to be independently correlated with both carotid plaque prevalence and intima-media thickness. Consistently, TSH receptor ablation in ApoE−/− mice attenuated atherogenesis, accompanied by decreased vascular inflammation and macrophage burden in atherosclerotic plaques. These results were also observed in myeloid-specific Tshr-deficient ApoE−/− mice, which indicated macrophages to be a critical target of the proinflammatory and atherogenic effects of TSH. In vitro experiments further revealed that TSH activated MAPKs (ERK1/2, p38α, and JNK) and IκB/p65 pathways in macrophages and increased inflammatory cytokine production and their recruitment of monocytes. Thus, the present study has elucidated the new mechanisms by which TSH, as an independent risk factor of atherosclerosis, aggravates vascular inflammation and contributes to atherogenesis.
Collapse
Affiliation(s)
- Chongbo Yang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Ming Lu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,School of Medicine, Shandong University, Jinan, Shandong, China
| | - Xu Hou
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Mei Feng
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaoming Zhou
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Yong Yu
- Department of Sonography, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Meng Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Laicheng Wang
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Wenjian Jiang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Ministry of Public Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Huang G, Wu X, Li S, Xu X, Zhu H, Chen X. The long noncoding RNA CASC2 functions as a competing endogenous RNA by sponging miR-18a in colorectal cancer. Sci Rep 2016; 6:26524. [PMID: 27198161 PMCID: PMC4873821 DOI: 10.1038/srep26524] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/04/2016] [Indexed: 01/17/2023] Open
Abstract
Recent evidence highlights the crucial regulatory roles of long noncoding RNAs (lncRNA) in tumor biology. In colorectal cancer (CRC), the expression of several lncRNAs is dysregulated and play essential roles in CRC tumorigenesis. However, the potential biological roles and regulatory mechanisms of the novel human lncRNA, CASC2 (cancer susceptibility candidate 2), in tumor biology are poorly understood. In this study, CASC2 expression was significantly decreased in CRC tissues and CRC cell lines, and decreased expression was significantly more frequent in patients with advanced tumor-node-metastasis stage disease (TNM III and IV) (P = 0.028). Further functional experiments indicate that CASC2 could directly upregulate PIAS3 expression by functioning as a competing endogenous RNA (ceRNA) for miR-18a. This interactions leads to the de-repression of genes downstream of STAT3 and consequentially inhibition of CRC cell proliferation and tumor growth in vitro and in vivo by extending the G0/G1-S phase transition. Taken together, these observations suggest CASC2 as a ceRNA plays an important role in CRC pathogenesis and may serve as a potential target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Guanli Huang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xiaoli Wu
- Department of gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Shi Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xiaoqun Xu
- Operating room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Hua Zhu
- Department of Obstetrics and Gynecology The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xiangjian Chen
- Department of endoscopic surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|