1
|
Tschon M, Brogini S, Parrilli A, Bertoldi S, Silini A, Parolini O, Faré S, Martini L, Veronesi F, Fini M, Giavaresi G. Assessment of the in vivo biofunctionality of a biomimetic hybrid scaffold for osteochondral tissue regeneration. Biotechnol Bioeng 2020; 118:465-480. [PMID: 32997340 DOI: 10.1002/bit.27584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Chondral and osteochondral lesions represent one of the most challenging problems in the orthopedic field, as these types of injuries lead to disability and worsened quality of life for patients and have an economic impact on the healthcare system. The aim of this in vivo study was to develop a new tissue engineering approach through a hybrid scaffold for osteochondral tissue regeneration made of porous polyurethane foam (PU) coated under vacuum with calcium phosphates (PU/VAC). Scaffold characterization showed a highly porous and interconnected structure. Human amniotic mesenchymal stromal cells (hAMSCs) were loaded into scaffolds using pectin (PECT) as a carrier. Osteochondral defects in medial femoral condyles of rabbits were created and randomly allocated in one of the following groups: plain scaffold (PU/VAC), scaffold with hAMSCs injected in the implant site (PU/VAC/hAMSC), scaffold with hAMSCs loaded in pectin (PU/VAC/PECT/hAMSC), and no treated defects (untreated). The therapeutic efficacy was assessed by macroscopic, histological, histomorphometric, microtomographic, and ultrastructural analyses at 3, 6, 12, and 24 weeks. Histological results showed that the scaffold was permissive to tissue growth and penetration, an immature osteocartilaginous tissue was observed at early experimental times, with a more accentuated bone regeneration in comparison with the cartilage layer in the absence of any inflammatory reaction.
Collapse
Affiliation(s)
- Matilde Tschon
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Silvia Brogini
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Annapaola Parrilli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Serena Bertoldi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
| | - Antonietta Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, via Bissolati 57, Brescia, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy.,Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Silvia Faré
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
| | - Lucia Martini
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Francesca Veronesi
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Milena Fini
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Gianluca Giavaresi
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| |
Collapse
|
2
|
Favreau H, Pijnenburg L, Seitlinger J, Fioretti F, Keller L, Scipioni D, Adriaensen H, Kuchler-Bopp S, Ehlinger M, Mainard D, Rosset P, Hua G, Gentile L, Benkirane-Jessel N. Osteochondral repair combining therapeutics implant with mesenchymal stem cells spheroids. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102253. [PMID: 32619705 DOI: 10.1016/j.nano.2020.102253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022]
Abstract
Functional articular cartilage regeneration remains challenging, and it is essential to restore focal osteochondral defects and prevent secondary osteoarthritis. Combining autologous stem cells with therapeutic medical device, we developed a bi-compartmented implant that could promote both articular cartilage and subchondral bone regeneration. The first compartment based on therapeutic collagen associated with bone morphogenetic protein 2, provides structural support and promotes subchondral bone regeneration. The second compartment contains bone marrow-derived mesenchymal stem cell spheroids to support the regeneration of the articular cartilage. Six-month post-implantation, the regenerated articular cartilage surface was 3 times larger than that of untreated animals, and the regeneration of the osteochondral tissue occurred during the formation of hyaline-like cartilage. Our results demonstrate the positive impact of this combined advanced therapy medicinal product, meeting the needs of promising osteochondral regeneration in critical size articular defects in a large animal model combining not only therapeutic implant but also stem cells.
Collapse
Affiliation(s)
- Henri Favreau
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpitaux universitaires de Strasbourg (HUS), Hôpital de Hautepierre, Service de rhumatologie, Service de chirurgie thoracique and Service de chirurgie orthopédique et de traumatologie, Université de Strasbourg, Strasbourg, France
| | - Luc Pijnenburg
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpitaux universitaires de Strasbourg (HUS), Hôpital de Hautepierre, Service de rhumatologie, Service de chirurgie thoracique and Service de chirurgie orthopédique et de traumatologie, Université de Strasbourg, Strasbourg, France
| | - Joseph Seitlinger
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpitaux universitaires de Strasbourg (HUS), Hôpital de Hautepierre, Service de rhumatologie, Service de chirurgie thoracique and Service de chirurgie orthopédique et de traumatologie, Université de Strasbourg, Strasbourg, France
| | - Florence Fioretti
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Laetitia Keller
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Dominique Scipioni
- Hôpital Erasme-Cliniques universitaires de Bruxelles, Université libre de Bruxelles (ULB), CHIREC-Hôpital Delta, Belgique
| | - Hans Adriaensen
- CHRU de Tours, Service de Chirurgie Orthopédique 2, Faculté de Médecine de Tours, and INRA de tours, Université François Rabelais, Tours, France
| | - Sabine Kuchler-Bopp
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Matthieu Ehlinger
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpitaux universitaires de Strasbourg (HUS), Hôpital de Hautepierre, Service de rhumatologie, Service de chirurgie thoracique and Service de chirurgie orthopédique et de traumatologie, Université de Strasbourg, Strasbourg, France
| | - Didier Mainard
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpital central Nancy, Service d'Orthopédie, Nancy, France
| | - Phillippe Rosset
- CHRU de Tours, Service de Chirurgie Orthopédique 2, Faculté de Médecine de Tours, and INRA de tours, Université François Rabelais, Tours, France
| | - Guoqiang Hua
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Luca Gentile
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.
| |
Collapse
|
3
|
Gögele C, Schwarz S, Ondruschka B, Hammer N, Schulze-Tanzil G. Decellularized Iliotibial Band Recolonized with Allogenic Homotopic Fibroblasts or Bone Marrow-Derived Mesenchymal Stromal Cells. Methods Mol Biol 2017; 1577:55-69. [PMID: 28488244 DOI: 10.1007/7651_2017_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Decellularized scaffolds present promising biomimetic approaches in various fields of tissue engineering. Different tissues have been selected for decellularization, among them extracellular matrix (ECM)-rich tissues such as tendons, ligaments and cartilage. The dense ECM of ligaments is particularly challenging to achieve a completely non-immunogenic ECM void of any cells. Here, the methods for decellularization adapted to ligamentous tissue of the iliotibial band (ITB) are presented along with cell isolation and several recolonization techniques using allogenic ITB-derived fibroblasts or mesenchymal stromal cells (MSCs).
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Prof.-Ernst-Nathan Str. 1, Nuremberg, 90419, Germany
| | - Silke Schwarz
- Institute of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Prof.-Ernst-Nathan Str. 1, Nuremberg, 90419, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University of Leipzig, Johannisallee 28, Leipzig, 04103, Germany
| | - Niels Hammer
- Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Gundula Schulze-Tanzil
- Institute of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Prof.-Ernst-Nathan Str. 1, Nuremberg, 90419, Germany.
| |
Collapse
|