1
|
Malyshka D, Jimenez-Harrison D, Kuret J. Sedimentation and Laser Light Scattering Methods for Quantifying Synthetic Tau Aggregation Propensity. Methods Mol Biol 2024; 2754:117-129. [PMID: 38512664 DOI: 10.1007/978-1-0716-3629-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Tau aggregation assays detect and quantify the conversion of soluble tau monomers into species having filamentous or oligomeric structure. Assays for filamentous aggregates in cross-β-sheet conformation leverage optical, biochemical, or biophysical methods, each with their own advantages and throughput capacity. Here we provide protocols for two medium-throughput assays based on sedimentation and laser light scattering and compare their performance, their utility for characterizing tau aggregation dynamics, and their limitations relative to other approaches. Additionally, a protocol for transmission electron microscopy analysis is updated so as to be compatible with the truncated tau variants that have emerged as powerful tools for interrogating the structural basis of tau polymorphism. Together these methods contribute to a rich tool kit for interrogating tau aggregation kinetics and propensity over a wide range of experimental conditions.
Collapse
Affiliation(s)
- Dmitry Malyshka
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Daniela Jimenez-Harrison
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jeff Kuret
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
2
|
Wang KW, Zhang G, Kuo MH. Frontotemporal Dementia P301L Mutation Potentiates but Is Not Sufficient to Cause the Formation of Cytotoxic Fibrils of Tau. Int J Mol Sci 2023; 24:14996. [PMID: 37834443 PMCID: PMC10573866 DOI: 10.3390/ijms241914996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The P301L mutation in tau protein is a prevalent pathogenic mutation associated with neurodegenerative frontotemporal dementia, FTD. The mechanism by which P301L triggers or facilitates neurodegeneration at the molecular level remains unclear. In this work, we examined the effect of the P301L mutation on the biochemical and biological characteristics of pathologically relevant hyperphosphorylated tau. Hyperphosphorylated P301L tau forms cytotoxic aggregates more efficiently than hyperphosphorylated wildtype tau or unphosphorylated P301L tau in vitro. Mechanistic studies establish that hyperphosphorylated P301L tau exacerbates endoplasmic reticulum (ER) stress-associated gene upregulation in a neuroblastoma cell line when compared to wildtype hyperphosphorylated tau treatment. Furthermore, the microtubule cytoskeleton is severely disrupted following hyperphosphorylated P301L tau treatment. A hyperphosphorylated tau aggregation inhibitor, apomorphine, also inhibits the harmful effects caused by P301L hyperphosphorylated tau. In short, the P301L single mutation within the core repeat domain of tau renders the underlying hyperphosphorylated tau more potent in eliciting ER stress and cytoskeleton damage. However, the P301L mutation alone, without hyperphosphorylation, is not sufficient to cause these phenotypes. Understanding the conditions and mechanisms whereby selective mutations aggravate the pathogenic activities of tau can provide pivotal clues on novel strategies for drug development for frontotemporal dementia and other related neurodegenerative tauopathies, including Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (K.-W.W.); (G.Z.)
| |
Collapse
|
3
|
Jimenez-Harrison D, Huseby CJ, Hoffman CN, Sher S, Snyder D, Seal B, Yuan C, Fu H, Wysocki V, Giorgini F, Kuret J. DJ-1 Molecular Chaperone Activity Depresses Tau Aggregation Propensity through Interaction with Monomers. Biochemistry 2023; 62:976-988. [PMID: 36813261 PMCID: PMC9997487 DOI: 10.1021/acs.biochem.2c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Tau aggregate-bearing lesions are pathological markers and potential mediators of tauopathic neurodegenerative diseases, including Alzheimer's disease. The molecular chaperone DJ-1 colocalizes with tau pathology in these disorders, but it has been unclear what functional link exists between them. In this study, we examined the consequences of tau/DJ-1 interaction as isolated proteins in vitro. When added to full-length 2N4R tau under aggregation-promoting conditions, DJ-1 inhibited both the rate and extent of filament formation in a concentration-dependent manner. Inhibitory activity was low affinity, did not require ATP, and was not affected by substituting oxidation incompetent missense mutation C106A for wild-type DJ-1. In contrast, missense mutations previously linked to familial Parkinson's disease and loss of α-synuclein chaperone activity, M26I and E64D, displayed diminished tau chaperone activity relative to wild-type DJ-1. Although DJ-1 directly bound the isolated microtubule-binding repeat region of tau protein, exposure of preformed tau seeds to DJ-1 did not diminish seeding activity in a biosensor cell model. These data reveal DJ-1 to be a holdase chaperone capable of engaging tau as a client in addition to α-synuclein. Our findings support a role for DJ-1 as part of an endogenous defense against the aggregation of these intrinsically disordered proteins.
Collapse
Affiliation(s)
- Daniela Jimenez-Harrison
- Medical
Scientist Training Program, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Carol J. Huseby
- Department
of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Claire N. Hoffman
- Department
of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Steven Sher
- Medical
Scientist Training Program, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Dalton Snyder
- Department
of Chemistry and Biochemistry, The Ohio
State University College of Medicine, Columbus, Ohio 43210, United States
| | - Brayden Seal
- Department
of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Chunhua Yuan
- Campus
Chemical Instrument Center, The Ohio State
University College of Medicine, Columbus, Ohio 43210, United States
| | - Hongjun Fu
- Department
of Neuroscience, The Ohio State University
College of Medicine, Columbus, Ohio 43210, United States
| | - Vicki Wysocki
- Department
of Chemistry and Biochemistry, The Ohio
State University College of Medicine, Columbus, Ohio 43210, United States
| | - Flaviano Giorgini
- Department
of Genetics and Genome Biology, University
of Leicester, Leicester LE1 7RH, United
Kingdom
| | - Jeff Kuret
- Department
of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Han ZZ, Kang SG, Arce L, Westaway D. Prion-like strain effects in tauopathies. Cell Tissue Res 2022; 392:179-199. [PMID: 35460367 PMCID: PMC9034081 DOI: 10.1007/s00441-022-03620-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Tau is a microtubule-associated protein that plays crucial roles in physiology and pathophysiology. In the realm of dementia, tau protein misfolding is associated with a wide spectrum of clinicopathologically diverse neurodegenerative diseases, collectively known as tauopathies. As proposed by the tau strain hypothesis, the intrinsic heterogeneity of tauopathies may be explained by the existence of structurally distinct tau conformers, “strains”. Tau strains can differ in their associated clinical features, neuropathological profiles, and biochemical signatures. Although prior research into infectious prion proteins offers valuable lessons for studying how a protein-only pathogen can encompass strain diversity, the underlying mechanism by which tau subtypes are generated remains poorly understood. Here we summarize recent advances in understanding different tau conformers through in vivo and in vitro experimental paradigms, and the implications of heterogeneity of pathological tau species for drug development.
Collapse
Affiliation(s)
- Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Luis Arce
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada. .,Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Cooksey CJ. Quirks of dye nomenclature. 15. Geranine — a simple name, with a less than straight forward identity. Biotech Histochem 2020; 95:613-618. [DOI: 10.1080/10520295.2020.1744188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
6
|
Sonawane SK, Chinnathambi S. P301 L, an FTDP-17 Mutant, Exhibits Enhanced Glycation in vitro. J Alzheimers Dis 2020; 75:61-71. [PMID: 32250308 DOI: 10.3233/jad-191348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Frontotemporal dementia and parkinsonism-linked to chromosome-17 are a group of diseases with tau mutations leading to primary tauopathies which include progressive supranuclear palsy, corticobasal syndrome, and frontotemporal lobar degeneration. Alzheimer's disease is a non-primary tauopathy, which displays tau neuropathology of excess tangle formation and accumulation. FTDP-17 mutations are responsible for early onset of AD, which can be attributed to compromised physiological functions due to the mutations. Tau is a microtubule-binding protein that secures the integrity of polymerized microtubules in neuronal cells. It malfunctions owing to various insults and stress conditions-like mutations and post-translational modifications. OBJECTIVE In this study, we modified the wild type and tau mutants by methyl glyoxal and thus studied whether glycation can enhance the aggregation of predisposed mutant tau. METHODS Tau glycation was studied by fluorescence assays, SDS-PAGE analysis, conformational evaluation, and transmission electron microscopy. RESULTS Our study suggests that FTDP-17 mutant P301 L leads to enhanced glycation-induced aggregation as well as advanced glycation end products formation. Glycation forms amorphous aggregates of tau and its mutants without altering its native conformation. CONCLUSION The metabolic anomalies and genetic predisposition have found to accelerate tau-mediated neurodegeneration and prove detrimental for the early-onset of Alzheimer's disease.
Collapse
Affiliation(s)
- Shweta Kishor Sonawane
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
De Simone A, Naldi M, Tedesco D, Bartolini M, Davani L, Andrisano V. Advanced analytical methodologies in Alzheimer’s disease drug discovery. J Pharm Biomed Anal 2020; 178:112899. [DOI: 10.1016/j.jpba.2019.112899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
8
|
Huseby CJ, Bundschuh R, Kuret J. The role of annealing and fragmentation in human tau aggregation dynamics. J Biol Chem 2019; 294:4728-4737. [PMID: 30745358 DOI: 10.1074/jbc.ra118.006943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/25/2019] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease pathogenesis is associated with the conversion of monomeric tau protein into filamentous aggregates. Because both toxicity and prion-like spread of pathogenic tau depend in part on aggregate size, the processes that underlie filament formation and size distribution are of special importance. Here, using a combination of biophysical and computational approaches, we investigated the fibrillation dynamics of the human tau isoform 2N4R. We found that tau filaments engage in a previously uncharacterized secondary process involving end-to-end annealing and that rationalization of empirical aggregation data composed of total protomer concentrations and fibril length distributions requires inclusion of this process along with filament fragmentation. We noted that annealing of 2N4R tau filaments is robust, with an intrinsic association rate constant of a magnitude similar to that mediating monomer addition and consistent with diffusion-mediated protein-protein interactions in the absence of long-range attractive forces. In contrast, secondary nucleation on the surface of tau filaments did not detectably contribute to tau aggregation dynamics. These results indicate that tau filament ends engage in a range of homotypic interactions involving monomers, oligomers, and filaments. They further indicate that, in the case of tau protein, fibril annealing and fragmentation along with primary nucleation and elongation are the major processes controlling filament size distribution.
Collapse
Affiliation(s)
| | - Ralf Bundschuh
- From the Interdisciplinary Biophysics Graduate Program.,Departments of Physics, Internal Medicine, and Chemistry and Biochemistry, and
| | - Jeff Kuret
- From the Interdisciplinary Biophysics Graduate Program, .,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
9
|
Liquid-Liquid Phase Separation of Tau Protein in Neurobiology and Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:341-357. [PMID: 32096048 DOI: 10.1007/978-981-32-9358-8_25] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tau is an intrinsically unfolded protein that, aside from its important role in the regulation of microtubule stability, harbors an emerging number of other functions. In order to find explanations for some longtime unsolved aspects of neuronal tau biology in the brain, we may have to step aside from observing tau molecules in dilute solutions, and from assuming a mono-molecular physicochemical behavior of molecules in the cell. Liquid condensed phases of tau proteins, which form through the biophysical process of liquid-liquid phase separation (LLPS), behave like liquids and thereby offer a new regime of interactions in the cell. So far, there is evidence that tau condensates (i) play a role for neurodegenerative diseases by transitioning into aggregated forms of tau, (ii) are involved in microtubule binding, nucleation, and bundling, and (iii) are interacting with RNA molecules, which could impact RNA homeostasis and transcription. Likewise the functions of monomeric tau, also tau condensation is regulated by post-translational modifications and can be influenced by the local environment, for example in neuronal sub-compartments. However, we are just beginning to understand the physicochemistry of tau LLPS, and the biological role of tau condensation has to be explored in the next years.
Collapse
|
10
|
Khosravi Z, Nasiri Khalili MA, Moradi S, Hassan Sajedi R, Zeinoddini M. The Molecular Chaperone Artemin Efficiently Blocks Fibrillization of TAU Protein In Vitro. CELL JOURNAL 2017; 19:569-577. [PMID: 29105391 PMCID: PMC5672095 DOI: 10.22074/cellj.2018.4510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
Abstract
Objective Aggregation of the TAU proteins in the form of neurofibrillary tangles (NFTs) in the brain is a common risk
factor in tauopathies including Alzheimer’s disease (AD). Several strategies have been implemented to target NFTs,
among which chaperones, which facilitate the proper folding of proteins, appear to hold great promise in effectively
inhibiting TAU polymerization. The aim of this study was to analyze the impact of the chaperone Artemin on TAU
aggregation in vitro.
Materials and Methods In this experimental study, recombinant TAU- or Artemin proteins were expressed in E.coli
bacteria, and purified using ion-exchange and affinity chromatography. Sodium dodecyl sulfate-poly acrylamide gel
electrophoresis (SDS-PAGE) was used to run the extracted proteins and check their purity. Heparin was used as an
aggregation inducer. The interaction kinetics of TAU aggregation and disassembly was performed using thioflavin T
(ThT) fluorescence analysis and circular dichroism (CD) spectroscopy.
Results Ion-exchange and affinity chromatography yielded highly pure TAU and Artemin proteins for subsequent
analyses. In addition, we found that heparin efficiently induced TAU fibrillization 48 hours post-incubation, as evidenced
by ThT assay. Importantly, Artemin was observed to effectively block the aggregation of both physiologic- and supra-
physiologic TAU concentrations in a dose-dependent manner, as judged by ThT and CD spectroscopy analyses.
Conclusion Our collective results show, for the first time, that the chaperone Artemin could significantly inhibit
aggregation of the TAU proteins in a dose-dependent manner, and support Artemin as a potential potent blocker of TAU
aggregation in people with AD.
Collapse
Affiliation(s)
- Zahra Khosravi
- Department of Biosciences and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran
| | | | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Reza Hassan Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Zeinoddini
- Department of Biosciences and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|