1
|
Sun J, Kessl JJ. Optimizing the Multimerization Properties of Quinoline-Based Allosteric HIV-1 Integrase Inhibitors. Viruses 2024; 16:200. [PMID: 38399977 PMCID: PMC10892445 DOI: 10.3390/v16020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Allosteric HIV-1 Integrase (IN) Inhibitors or ALLINIs bind at the dimer interface of the IN, away from the enzymatic catalytic site, and disable viral replication by inducing over-multimerization of IN. Interestingly, these inhibitors are capable of impacting both the early and late stages of viral replication. To better understand the important binding features of multi-substituted quinoline-based ALLINIs, we have surveyed published studies on IN multimerization and antiviral properties of various substituted quinolines at the 4, 6, 7, and 8 positions. Here we show how the efficacy of these inhibitors can be modulated by the nature of the substitutions at those positions. These features not only improve the overall antiviral potencies of these compounds but also significantly shift the selectivity toward the viral maturation stage. Thus, to fully maximize the potency of ALLINIs, the interactions between the inhibitor and multiple IN subunits need to be simultaneously optimized.
Collapse
Affiliation(s)
- Jian Sun
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jacques J. Kessl
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
2
|
Multi-Substituted Quinolines as HIV-1 Integrase Allosteric Inhibitors. Viruses 2022; 14:v14071466. [PMID: 35891446 PMCID: PMC9324412 DOI: 10.3390/v14071466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/25/2023] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors, or ALLINIs, are a new class of antiviral agents that bind at the dimer interface of the IN, away from the enzymatic catalytic site and block viral replication by triggering an aberrant multimerization of the viral enzyme. To further our understanding of the important binding features of multi-substituted quinoline-based ALLINIs, we have examined the IN multimerization and antiviral properties of substitution patterns at the 6 or 8 position. We found that the binding properties of these ALLINIs are negatively impacted by the presence of bulky substitutions at these positions. In addition, we have observed that the addition of bromine at either the 6 (6-bromo) or 8 (8-bromo) position conferred better antiviral properties. Finally, we found a significant loss of potency with the 6-bromo when tested with the ALLINI-resistant IN A128T mutant virus, while the 8-bromo analog retained full effectiveness.
Collapse
|
3
|
Adu-Ampratwum D, Pan Y, Koneru PC, Antwi J, Hoyte AC, Kessl J, Griffin PR, Kvaratskhelia M, Fuchs JR, Larue RC. Identification and Optimization of a Novel HIV-1 Integrase Inhibitor. ACS OMEGA 2022; 7:4482-4491. [PMID: 35155940 PMCID: PMC8829933 DOI: 10.1021/acsomega.1c06378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/13/2022] [Indexed: 05/17/2023]
Abstract
Human immunodeficiency virus-1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome (AIDS). HIV-1, like all retroviruses, stably integrates its vDNA copy into host chromatin, a process allowing for permanent infection. This essential step for HIV-1 replication is catalyzed by viral integrase (IN) and aided by cellular protein LEDGF/p75. In addition, IN is also crucial for proper virion maturation as it interacts with the viral RNA genome to ensure encapsulation of ribonucleoprotein complexes within the protective capsid core. These key functions make IN an attractive target for the development of inhibitors with various mechanisms of action. We conducted a high-throughput screen (HTS) of ∼370,000 compounds using a homogeneous time-resolved fluorescence-based assay capable of capturing diverse inhibitors targeting multifunctional IN. Our approach revealed chemical scaffolds containing diketo acid moieties similar to IN strand transfer inhibitors (INSTIs) as well as novel compounds distinct from all current IN inhibitors including INSTIs and allosteric integrase inhibitors (ALLINIs). Specifically, our HTS resulted in the discovery of compound 12, with a novel IN inhibitor scaffold amenable for chemical modification. Its more potent derivative 14e similarly inhibited catalytic activities of WT and mutant INs containing archetypical INSTI- and ALLINI-derived resistant substitutions. Further SAR-based optimization resulted in compound 22 with an antiviral EC50 of ∼58 μM and a selectivity index of >8500. Thus, our studies identified a novel small-molecule scaffold for inhibiting HIV-1 IN, which provides a promising platform for future development of potent antiviral agents to complement current HIV-1 therapies.
Collapse
Affiliation(s)
- Daniel Adu-Ampratwum
- Division
of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuhan Pan
- Division
of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pratibha C. Koneru
- Division
of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado 80045, United States
| | - Janet Antwi
- Division
of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ashley C. Hoyte
- Division
of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado 80045, United States
| | - Jacques Kessl
- Department
of Chemistry & Biochemistry, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Patrick R. Griffin
- Department
of Molecular Medicine, The Scripps Research
Institute, Jupiter, Florida 33458, United
States
| | - Mamuka Kvaratskhelia
- Division
of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Division
of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado 80045, United States
| | - James R. Fuchs
- Division
of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ross C. Larue
- Division
of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Optimized binding of substituted quinoline ALLINIs within the HIV-1 integrase oligomer. J Biol Chem 2021; 296:100363. [PMID: 33539919 PMCID: PMC7949159 DOI: 10.1016/j.jbc.2021.100363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
During the integration step, human immunodeficiency virus type 1 integrase (IN) interacts with viral DNA and the cellular cofactor LEDGF/p75 to effectively integrate the reverse transcript into the host chromatin. Allosteric human immunodeficiency virus type 1 integrase inhibitors (ALLINIs) are a new class of antiviral agents that bind at the dimer interface of the IN catalytic core domain and occupy the binding site of LEDGF/p75. While originally designed to block IN-LEDGF/p75 interactions during viral integration, several of these compounds have been shown to also severely impact viral maturation through an IN multimerization mechanism. In this study, we tested the hypothesis that these dual properties of ALLINIs could be decoupled toward late stage viral replication effects by generating additional contact points between the bound ALLINI and a third subunit of IN. By sequential derivatization at position 7 of a quinoline-based ALLINI scaffold, we show that IN multimerization properties are enhanced by optimizing hydrophobic interactions between the compound and the C-terminal domain of the third IN subunit. These features not only improve the overall antiviral potencies of these compounds but also significantly shift the ALLINIs selectivity toward the viral maturation stage. Thus, we demonstrate that to fully maximize the potency of ALLINIs, the interactions between the inhibitor and all three IN subunits need to be simultaneously optimized.
Collapse
|
5
|
Jentsch NG, Hume JD, Crull EB, Beauti SM, Pham AH, Pigza JA, Kessl JJ, Donahue MG. Quinolines from the cyclocondensation of isatoic anhydride with ethyl acetoacetate: preparation of ethyl 4-hydroxy-2-methylquinoline-3-carboxylate and derivatives. Beilstein J Org Chem 2018; 14:2529-2536. [PMID: 30344776 PMCID: PMC6178280 DOI: 10.3762/bjoc.14.229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/04/2018] [Indexed: 01/25/2023] Open
Abstract
A convenient two-step synthesis of ethyl 4-hydroxy-2-methylquinoline-3-carboxylate derivatives has been developed starting from commercially available 2-aminobenzoic acids. In step 1, the anthranilic acids are smoothly converted to isatoic anhydrides using solid triphosgene in THF. In step 2, the anhydride electrophiles are reacted with the sodium enolate of ethyl acetoacetate, generated from sodium hydroxide, in warm N,N-dimethylacetamide resulting in the formation of substituted quinolines. A degradation-build-up strategy of the ethyl ester at the 3-position allowed for the construction of the α-hydroxyacetic acid residue required for the synthesis of key arylquinolines involved in an HIV integrase project.
Collapse
Affiliation(s)
- Nicholas G Jentsch
- Department of Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive #5043, Hattiesburg, MS 39406, USA
| | - Jared D Hume
- Department of Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive #5043, Hattiesburg, MS 39406, USA
| | - Emily B Crull
- Department of Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive #5043, Hattiesburg, MS 39406, USA
| | - Samer M Beauti
- Department of Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive #5043, Hattiesburg, MS 39406, USA
| | - Amy H Pham
- Department of Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive #5043, Hattiesburg, MS 39406, USA
| | - Julie A Pigza
- Department of Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive #5043, Hattiesburg, MS 39406, USA
| | - Jacques J Kessl
- Department of Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive #5043, Hattiesburg, MS 39406, USA
| | - Matthew G Donahue
- Department of Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive #5043, Hattiesburg, MS 39406, USA
| |
Collapse
|
6
|
Jentsch NG, Hart AP, Hume JD, Sun J, McNeely KA, Lama C, Pigza JA, Donahue MG, Kessl JJ. Synthesis and Evaluation of Aryl Quinolines as HIV-1 Integrase Multimerization Inhibitors. ACS Med Chem Lett 2018; 9:1007-1012. [PMID: 30344908 DOI: 10.1021/acsmedchemlett.8b00269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022] Open
Abstract
HIV-1 integrase multimerization inhibitors have recently been established as an effective class of antiretroviral agents due to their potent ability to inhibit viral replication. Specifically, quinoline-based inhibitors have been shown to effectively impair HIV-1 replication, highlighting the importance of these heterocyclic scaffolds. Pursuant of our endeavors to further develop a library of quinoline-based candidates, we have implemented a structure-activity relationship study of trisubstituted 4-arylquinoline scaffolds that examined the integrase multimerization properties of substitution patterns at the 4-position of the quinoline. Compounds consisting of substituted phenyl rings, heteroaromatics, or polycyclic moieties were examined utilizing an integrase aberrant multimerization in vitro assay. para-Chloro-4-phenylquinoline 11b and 2,3-benzo[b][1,4]dioxine 15f showed noteworthy EC50 values of 0.10 and 0.08 μM, respectively.
Collapse
Affiliation(s)
- Nicholas G. Jentsch
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Alison P. Hart
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jared D. Hume
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jian Sun
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Kaitlin A. McNeely
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Chiyang Lama
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Julie A. Pigza
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Matthew G. Donahue
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jacques J. Kessl
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
7
|
Patel D, Antwi J, Koneru PC, Serrao E, Forli S, Kessl JJ, Feng L, Deng N, Levy RM, Fuchs JR, Olson AJ, Engelman AN, Bauman JD, Kvaratskhelia M, Arnold E. A New Class of Allosteric HIV-1 Integrase Inhibitors Identified by Crystallographic Fragment Screening of the Catalytic Core Domain. J Biol Chem 2016; 291:23569-23577. [PMID: 27645997 DOI: 10.1074/jbc.m116.753384] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 12/29/2022] Open
Abstract
HIV-1 integrase (IN) is essential for virus replication and represents an important multifunctional therapeutic target. Recently discovered quinoline-based allosteric IN inhibitors (ALLINIs) potently impair HIV-1 replication and are currently in clinical trials. ALLINIs exhibit a multimodal mechanism of action by inducing aberrant IN multimerization during virion morphogenesis and by competing with IN for binding to its cognate cellular cofactor LEDGF/p75 during early steps of HIV-1 infection. However, quinoline-based ALLINIs impose a low genetic barrier for the evolution of resistant phenotypes, which highlights a need for discovery of second-generation inhibitors. Using crystallographic screening of a library of 971 fragments against the HIV-1 IN catalytic core domain (CCD) followed by a fragment expansion approach, we have identified thiophenecarboxylic acid derivatives that bind at the CCD-CCD dimer interface at the principal lens epithelium-derived growth factor (LEDGF)/p75 binding pocket. The most active derivative (5) inhibited LEDGF/p75-dependent HIV-1 IN activity in vitro with an IC50 of 72 μm and impaired HIV-1 infection of T cells at an EC50 of 36 μm The identified lead compound, with a relatively small molecular weight (221 Da), provides an optimal building block for developing a new class of inhibitors. Furthermore, although structurally distinct thiophenecarboxylic acid derivatives target a similar pocket at the IN dimer interface as the quinoline-based ALLINIs, the lead compound, 5, inhibited IN mutants that confer resistance to quinoline-based compounds. Collectively, our findings provide a plausible path for structure-based development of second-generation ALLINIs.
Collapse
Affiliation(s)
- Disha Patel
- From the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854
| | - Janet Antwi
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy and
| | - Pratibha C Koneru
- Center for Retrovirus Research and College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Erik Serrao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Stefano Forli
- Molecular Graphics Laboratory, Department of Integrative Structural and Computational Biology, MB-112, The Scripps Research Institute, La Jolla, California 92037
| | - Jacques J Kessl
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, and
| | - Lei Feng
- Center for Retrovirus Research and College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Nanjie Deng
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
| | - Ronald M Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy and
| | - Arthur J Olson
- Molecular Graphics Laboratory, Department of Integrative Structural and Computational Biology, MB-112, The Scripps Research Institute, La Jolla, California 92037
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Joseph D Bauman
- From the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College of Pharmacy, Ohio State University, Columbus, Ohio 43210,
| | - Eddy Arnold
- From the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854,
| |
Collapse
|