1
|
Chen Y, Xie D, Ma X, Xue X, Liu M, Xiao X, Lai C, Xu X, Chen X, Chen Y, Zhang Z, XuHan X, Lai Z, Lin Y. Genome-wide high-throughput chromosome conformation capture analysis reveals hierarchical chromatin interactions during early somatic embryogenesis. PLANT PHYSIOLOGY 2023; 193:555-577. [PMID: 37313777 DOI: 10.1093/plphys/kiad348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
Somatic embryogenesis (SE), like zygotic embryo development, is a progressive process. Early SE is the beginning of a switch from a somatic to an embryogenic state and is an important stage for initiating chromatin reprogramming of SE. Previous studies suggest that changes in chromatin accessibility occur during early SE, although information on the 3D structure of chromatin is not yet available. Here, we present a chromosome-level genome assembly of longan (Dimocarpus longan) using PacBio combined with high-through chromosome conformation capture scaffolding, which resulted in a 446 Mb genome assembly anchored onto 15 scaffolds. During early SE, chromatin was concentrated and then decondensed, and a large number of long terminal repeat retrotransposons (LTR-RTs) were enriched in the local chromatin interaction region, suggesting LTR-RTs were involved in chromatin reorganization. Early SE was accompanied by the transformation from A to B compartments, and the interactions between B compartments were enhanced. Results from chromatin accessibility, monomethylation of histone H3 at lysine 4 (H3K4me1) modification, and transcription analyses further revealed a gene regulatory network for cell wall thickening during SE. Particularly, we found that the H3K4me1 differential peak binding motif showed abnormal activation of ethylene response factor transcription factors and participation in SE. The chromosome-level genomic and multiomics analyses revealed the 3D conformation of chromatin during early SE, providing insight into the molecular mechanisms underlying cell wall thickening and the potential regulatory networks of TFs during early SE in D. longan. These results provide additional clues for revealing the molecular mechanisms of plant SE.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dejian Xie
- Beijing Research Center, Wuhan Frasergen Bioinformatics Co., Ltd, Beijing 100081, China
| | - Xiangwei Ma
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaodong Xue
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mengyu Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xuechen Xiao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chunwang Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu XuHan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, Toulouse 31300, France
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
2
|
Xu Y, Shang W, Li L, Song Y, Wang G, Shi L, Shen Y, Sun Y, He S, Wang Z. Transcriptome Landscape Analyses of the Regulatory Network for Zygotic Embryo Development in Paeonia ostii. Int J Mol Sci 2023; 24:10715. [PMID: 37445891 DOI: 10.3390/ijms241310715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Paeonia ostii is a worldwide ornamental flower and an emerging oil crop. Zyotic embryogenesis is a critical process during seed development, and it can provide a basis for improving the efficiency of somatic embryogenesis (SE). In this study, transcriptome sequencing of embryo development was performed to investigate gene expression profiling in P. ostii and identified Differentially expressed genes (DEGs) related to transcription factors, plant hormones, and antioxidant enzymes. The results indicated that IAA (Indole-3-acetic acid), GA (Gibberellin), BR (Brassinosteroid) and ETH (Ethylene) were beneficial to early embryonic morphogenesis, while CTK (Cytokinin) and ABA (Abscisic Acid) promoted embryo morphogenesis and maturation. The antioxidant enzymes' activity was the highest in early embryos and an important participant in embryo formation. The high expression of the genes encoding fatty acid desaturase was beneficial to fast oil accumulation. Representative DEGs were selected and validated using qRT-PCR. Protein-protein interaction network (PPI) was predicted, and six central node proteins, including AUX1, PIN1, ARF6, LAX3, ABCB19, PIF3, and PIF4, were screened. Our results provided new insights into the formation of embryo development and even somatic embryo development in tree peonies.
Collapse
Affiliation(s)
- Yufeng Xu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Linda Li
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yinglong Song
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiqing Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyun Shi
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuxiao Shen
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuke Sun
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Songlin He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
- Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
Berggren K, Nordkvist M, Björkman C, Bylund H, Klapwijk MJ, Puentes A. Synergistic effects of methyl jasmonate treatment and propagation method on Norway spruce resistance against a bark-feeding insect. FRONTIERS IN PLANT SCIENCE 2023; 14:1165156. [PMID: 37346130 PMCID: PMC10279954 DOI: 10.3389/fpls.2023.1165156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Utilizing plants with enhanced resistance traits is gaining interest in plant protection. Two strategies are especially promising for increasing resistance against a forest insect pest, the pine weevil (Hylobius abietis): exogenous application of the plant defense hormone methyl jasmonate (MeJA), and production of plants through the clonal propagation method somatic embryogenesis (SE). Here, we quantified and compared the separate and combined effects of SE and MeJA on Norway spruce resistance to pine weevil damage. Plants produced via SE (emblings) and nursery seedlings (containerized and bare-root), were treated (or not) with MeJA and exposed to pine weevils in the field (followed for 3 years) and in the lab (with a non-choice experiment). Firstly, we found that SE and MeJA independently decreased pine weevil damage to Norway spruce plants in the field by 32-33% and 53-59%, respectively, compared to untreated containerized and bare-root seedlings. Secondly, SE and MeJA together reduced damage to an even greater extent, with treated emblings receiving 86-87% less damage when compared to either untreated containerized or bare-root seedlings in the field, and by 48% in the lab. Moreover, MeJA-treated emblings experienced 98% lower mortality than untreated containerized seedlings, and this high level of survival was similar to that experienced by treated bare-root seedlings. These positive effects on survival remained for MeJA-treated emblings across the 3-year experimental period. We conclude that SE and MeJA have the potential to work synergistically to improve plants' ability to resist damage, and can thus confer a strong plant protection advantage. The mechanisms underlying these responses merit further examination.
Collapse
|
4
|
Henao Ramírez AM, Morales Muñoz JD, Vanegas Villa DM, Hernández Hernández RT, Urrea-Trujillo AI. Regeneration of cocoa (Theobroma cacao L.) via somatic embryogenesis: Key aspects in the in vitro conversion stage and in the ex vitro adaptation of plantlets. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Adapting plantlets to ex vitro conditions is a decisive step in the micropropagation process via organogenesis or somatic embryogenesis (ES). The percentage of success in this stage determines the quality of the product, an example of which is found in cocoa plantlets regenerated by ES, which require specific conditions to overcome the stress of the new environment. Considering the quality of the in vitro plantlets largely determines the survival and growth in ex vitro conditions, the effect of two culture media between the embryo maturation stage and the initial stage of conversion to plantlet was evaluated (EM2 - MM6 and EM2 – MF medium), achieving with the latter greater stem height, root length and the number of true leaves. In the final stage of the conversion and growth of the plantlet, the effect of five culture media was evaluated (ENR6, MF, ENR8, EDL, PR), achieving better results in stem height, root length, and the number of true leaves on MF medium. In addition, it was found that the transition of the EM2-MF had a significant development in the presence of the desired pivoting root and fibrous roots. Under nursery conditions, the growth and development of the plantlets was tested through the inoculation of beneficial microorganisms to promote survival. The plantlets that met the minimum morphological parameters for acclimation were planted in a substrate of coconut palm and sand (3:1 v/v) previously selected in the laboratory (BS). The effect of Pseudomonas ACC deaminase (PAACd), Trichoderma asperellum (Ta) and arbuscular mycorrhiza forming fungus (AMF) and different concentrations of phosphorus (PC) (0%, 50% and 100%) in the Hoagland nutrient solution (1:10) was evaluated. First, for CCN5, 62.5% of survival was obtained with PAACd + AMF. Second, the largest leaf size and survival were obtained with PAACd + Ta for CNCh12 and CCN51; likewise, for CNCh13, the best result was obtained with PAACd.
Keywords: Cacao, Clonal propagation, Mycorrhiza, Pseudomonas, Trichoderma.
Collapse
Affiliation(s)
- Ana María Henao Ramírez
- Center of Agrobiotechnological Development and Innovation – CEDAIT, Universidad de Antioquia, Km. 1.7 vía San Antonio de Pereira - Carmen de Viboral, A.A 054048, Colombia
| | - Julián David Morales Muñoz
- Center of Agrobiotechnological Development and Innovation – CEDAIT, Universidad de Antioquia, Km. 1.7 vía San Antonio de Pereira - Carmen de Viboral, A.A 054048, Colombia
| | - Diana Marcela Vanegas Villa
- Center of Agrobiotechnological Development and Innovation – CEDAIT, Universidad de Antioquia, Km. 1.7 vía San Antonio de Pereira - Carmen de Viboral, A.A 054048, Colombia
| | | | - Aura Inés Urrea-Trujillo
- Biology Institute, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, A. A 050010, Colombia
| |
Collapse
|
5
|
Macias Naranjo SM, Henao Ramírez AM, Urrea Trujillo AI. Propagation of the Colombian genotype of cacao (Theobroma cacao L.) CNCh-12 by somatic embryogenesis. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Cocoa production (Theobroma cacao L.) is essential globally and constitutes one of the leading export products for Colombia. Understanding the limitations faced by this crop in Latin American countries, it is required, among other aspects, to contribute to strengthening the first link in the production chain through efficient propagation methods and genetic improvement. Knowing that somatic embryogenesis is an alternative to conventional propagation and constitutes an obligatory step in a breeding platform, the objective of this work was to establish a somatic embryogenesis protocol until the plantlet acclimatization in the nursery for the regional genotype CNCh-12, a promising material with productivities higher than 2,000 kg/ha. Different protocols were evaluated, from callogenesis induction, through the expression of primary somatic embryos (PSE) followed by maturation and subsequent conversion to plantlet two types of explants (petal and staminode) and culture time (according to the stage). Additionally, the induction of secondary somatic embryos (SSE) was evaluated in two culture media (L and F). For CNCh-12, the petal was found as an appropriate explant, with a minimum time of 15 days in induction for PSE formation, without difference between the culture media F and L (22 average embryos). Embryo maturation was achieved in medium F after 30 days, followed by an additional 30 days for conversion to plantlet (52.83%). The concentration of salts to increase the conversion and development of the embryos was 1/5 of that used in F. The highest number of SSE was in the L medium. Finally, the ex-vitro adaptation was achieved when the plants were planted in 50:50 sand-coconut fiber and moistened weekly with Hoagland's solution (1:10).
Keywords: Cacao, petals, in vitro propagation, plant growth regulators, somatic embryogenesis.
Collapse
Affiliation(s)
- Sandra Marcela Macias Naranjo
- Agrobiotechnological Development Center for Innovation – CEDAIT, Universidad de Antioquia, Km. 1.7 vía San Antonio de Pereira - Carmen de Viboral, A.A 054048, Colombia
| | - Ana María Henao Ramírez
- Agrobiotechnological Development Center for Innovation – CEDAIT, Universidad de Antioquia, Km. 1.7 vía San Antonio de Pereira - Carmen de Viboral, A.A 054048, Colombia
| | - Aura Inés Urrea Trujillo
- Biology Institute, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, A. A 050010, Colombia
| |
Collapse
|
6
|
Kumar S, Ruggles A, Logan S, Mazarakis A, Tyson T, Bates M, Grosse C, Reed D, Li Z, Grimwood J, Schmutz J, Saski C. Comparative Transcriptomics of Non-Embryogenic and Embryogenic Callus in Semi-Recalcitrant and Non-Recalcitrant Upland Cotton Lines. PLANTS 2021; 10:plants10091775. [PMID: 34579308 PMCID: PMC8472754 DOI: 10.3390/plants10091775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Somatic embryogenesis-mediated plant regeneration is essential for the genetic manipulation of agronomically important traits in upland cotton. Genotype specific recalcitrance to regeneration is a primary challenge in deploying genome editing and incorporating useful transgenes into elite cotton germplasm. In this study, transcriptomes of a semi-recalcitrant cotton (Gossypium hirsutum L.) genotype ‘Coker312’ were analyzed at two critical stages of somatic embryogenesis that include non-embryogenic callus (NEC) and embryogenic callus (EC) cells, and the results were compared to a non-recalcitrant genotype ‘Jin668’. We discovered 305 differentially expressed genes in Coker312, whereas, in Jin668, about 6-fold more genes (2155) were differentially expressed. A total of 154 differentially expressed genes were common between the two genotypes. Gene enrichment analysis of the upregulated genes identified functional categories, such as lipid transport, embryo development, regulation of transcription, sugar transport, and vitamin biosynthesis, among others. In Coker312 EC cells, five major transcription factors were highly upregulated: LEAFY COTYLEDON 1 (LEC1), WUS-related homeobox 5 (WOX5), ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and WRKY2. In Jin668, LEC1, BABY BOOM (BBM), FUS3, and AGAMOUS-LIKE15 (AGL15) were highly expressed in EC cells. We also found that gene expression of these embryogenesis genes was typically higher in Jin668 when compared to Coker312. We conclude that significant differences in the expression of the above genes between Coker312 and Jin668 may be a critical factor affecting the regenerative ability of these genotypes.
Collapse
Affiliation(s)
- Sonika Kumar
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.K.); (Z.L.)
| | - Ashleigh Ruggles
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Sam Logan
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Alora Mazarakis
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Thomas Tyson
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Matthew Bates
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Clayton Grosse
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - David Reed
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Zhigang Li
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.K.); (Z.L.)
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (J.G.); (J.S.)
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (J.G.); (J.S.)
| | - Christopher Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.K.); (Z.L.)
- Correspondence: ; Tel.: +1-864-656-6929
| |
Collapse
|
7
|
Kuczak M, Kurczyńska E. Cell Wall Composition as a Marker of the Reprogramming of the Cell Fate on the Example of a Daucus carota (L.) Hypocotyl in Which Somatic Embryogenesis Was Induced. Int J Mol Sci 2020; 21:E8126. [PMID: 33143222 PMCID: PMC7662930 DOI: 10.3390/ijms21218126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Changes in the composition of the cell walls are postulated to accompany changes in the cell's fate. We check whether there is a relationship between the presence of selected pectic, arabinogalactan proteins (AGPs), and extensins epitopes and changes in cell reprogramming in order to answer the question of whether they can be markers accompanying changes of cell fate. Selected antibodies were used for spatio-temporal immunolocalization of wall components during the induction of somatic embryogenesis. Based on the obtained results, it can be concluded that (1) the LM6 (pectic), LM2 (AGPs) epitopes are positive markers, but the LM5, LM19 (pectic), JIM8, JIM13 (AGPs) epitopes are negative markers of cells reprogramming to the meristematic/pluripotent state; (2) the LM8 (pectic), JIM8, JIM13, LM2 (AGPs) and JIM11 (extensin) epitopes are positive markers, but LM6 (pectic) epitope is negative marker of cells undergoing detachment; (3) JIM4 (AGPs) is a positive marker, but LM5 (pectic), JIM8, JIM13, LM2 (AGPs) are negative markers for pericycle cells on the xylem pole; (4) LM19, LM20 (pectic), JIM13, LM2 (AGPs) are constitutive wall components, but LM6, LM8 (pectic), JIM4, JIM8, JIM16 (AGPs), JIM11, JIM12 and JIM20 (extensins) are not constitutive wall components; (5) the extensins do not contribute to the cell reprogramming.
Collapse
Affiliation(s)
- Michał Kuczak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna St, 40–006 Katowice, Poland;
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, 40–032 Katowice, Poland
| |
Collapse
|
8
|
Chromatin Accessibility Dynamics and a Hierarchical Transcriptional Regulatory Network Structure for Plant Somatic Embryogenesis. Dev Cell 2020; 54:742-757.e8. [PMID: 32755547 DOI: 10.1016/j.devcel.2020.07.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Plant somatic embryogenesis refers to a phenomenon where embryos develop from somatic cells in the absence of fertilization. Previous studies have revealed that the phytohormone auxin plays a crucial role in somatic embryogenesis by inducing a cell totipotent state, although its underlying mechanism is poorly understood. Here, we show that auxin rapidly rewires the cell totipotency network by altering chromatin accessibility. The analysis of chromatin accessibility dynamics further reveals a hierarchical gene regulatory network underlying somatic embryogenesis. Particularly, we find that the embryonic nature of explants is a prerequisite for somatic cell reprogramming. Upon cell reprogramming, the B3-type totipotent transcription factor LEC2 promotes somatic embryo formation by direct activation of the early embryonic patterning genes WOX2 and WOX3. Our results thus shed light on the molecular mechanism by which auxin promotes the acquisition of plant cell totipotency and establish a direct link between cell totipotent genes and the embryonic development pathway.
Collapse
|
9
|
Lentini Z, Restrepo G, Buitrago ME, Tabares E. Protocol for Rescuing Young Cassava Embryos. FRONTIERS IN PLANT SCIENCE 2020; 11:522. [PMID: 32457774 PMCID: PMC7227409 DOI: 10.3389/fpls.2020.00522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/06/2020] [Indexed: 05/13/2023]
Abstract
Embryo rescue (ER) in cassava breeding has several relevant applications, from the recovery of broad crosses to the recovery of seeds from the standard pollination program. Cassava fruit setting may drop from 100%, during the 1st week after pollination, to less than 40% during the 2nd week after pollination due to the abscission of fruits depending on genotypes. Therefore, the availability of an ER protocol for early stages of embryo development, in particular during the first 2 weeks after pollination (prior the cotyledonary stage), could have practical implications for cassava breeding. Until now, attempts to recover cassava immature embryos at stages of development earlier than the cotyledonary stage failed. The earliest successful rescue reported in cassava is from embryos excised 32-36 days after anthesis (DAA). However, limited information was available regarding embryo development in cassava. This work studied and documented the stage of embryo development in histological sections of hand-pollinated ovules fixed from 1 to 30 days after anthesis (DAA). At 7 DAA, zygotes were just at the first stages of cell division (pro- embryo stage). At 14 DAA, embryos were at the pre-globular stage. Embryos at the early globular stage were observed in sections fixed at 21 DAA, and at the proper globular stage at 24 DAA. Samples at 30 DAA contained cotyledonary embryos that easily developed after ovule culture into viable plants using existing protocols. A second contribution of this work is the development of a protocol for the recovery of fully developed plants from immature embryos rescued and cultured in vitro as early as 7-14 DAA. Since embryos collected at this age are at the pro-embryo to pre-globular stage, ovary/ovule culture was necessary. A method is described whereby ovules were cultured to allow the development of pro-embryos and pre-globular stage embryos into the cotyledonary stage. Subsequently, these mature embryos were excised from the ovules to induce germination and the recovery of fully developed plants.
Collapse
Affiliation(s)
- Zaida Lentini
- Center of Specialized Natural and Biotechnological Ingredients (CINEB), School of Natural Sciences, Universidad Icesi, Cali, Colombia
| | | | | | | |
Collapse
|
10
|
Mohanapriya G, Bharadwaj R, Noceda C, Costa JH, Kumar SR, Sathishkumar R, Thiers KLL, Santos Macedo E, Silva S, Annicchiarico P, Groot SP, Kodde J, Kumari A, Gupta KJ, Arnholdt-Schmitt B. Alternative Oxidase (AOX) Senses Stress Levels to Coordinate Auxin-Induced Reprogramming From Seed Germination to Somatic Embryogenesis-A Role Relevant for Seed Vigor Prediction and Plant Robustness. FRONTIERS IN PLANT SCIENCE 2019; 10:1134. [PMID: 31611888 PMCID: PMC6776121 DOI: 10.3389/fpls.2019.01134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/16/2019] [Indexed: 05/21/2023]
Abstract
Somatic embryogenesis (SE) is the most striking and prominent example of plant plasticity upon severe stress. Inducing immature carrot seeds perform SE as substitute to germination by auxin treatment can be seen as switch between stress levels associated to morphophysiological plasticity. This experimental system is highly powerful to explore stress response factors that mediate the metabolic switch between cell and tissue identities. Developmental plasticity per se is an emerging trait for in vitro systems and crop improvement. It is supposed to underlie multi-stress tolerance. High plasticity can protect plants throughout life cycles against variable abiotic and biotic conditions. We provide proof of concepts for the existing hypothesis that alternative oxidase (AOX) can be relevant for developmental plasticity and be associated to yield stability. Our perspective on AOX as relevant coordinator of cell reprogramming is supported by real-time polymerase chain reaction (PCR) analyses and gross metabolism data from calorespirometry complemented by SHAM-inhibitor studies on primed, elevated partial pressure of oxygen (EPPO)-stressed, and endophyte-treated seeds. In silico studies on public experimental data from diverse species strengthen generality of our insights. Finally, we highlight ready-to-use concepts for plant selection and optimizing in vivo and in vitro propagation that do not require further details on molecular physiology and metabolism. This is demonstrated by applying our research & technology concepts to pea genotypes with differential yield performance in multilocation fields and chickpea types known for differential robustness in the field. By using these concepts and tools appropriately, also other marker candidates than AOX and complex genomics data can be efficiently validated for prebreeding and seed vigor prediction.
Collapse
Affiliation(s)
- Gunasekaran Mohanapriya
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Carlos Noceda
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
- Cell and Molecular Biology of Plants (BPOCEMP)/Industrial Biotechnology and Bioproducts, Department of Sciences of the Vidaydela Agriculture, University of the Armed Forces-ESPE, Milagro, Ecuador
- Faculty of Engineering, State University of Milagro (UNEMI), Milagro, Ecuador
| | - José Hélio Costa
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Sarma Rajeev Kumar
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Elisete Santos Macedo
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Sofia Silva
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Paolo Annicchiarico
- Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture, Lodi, Italy
| | - Steven P.C. Groot
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Jan Kodde
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Aprajita Kumari
- National Institute of Plant Genome Research, New Delhi, India
| | - Kapuganti Jagadis Gupta
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
- National Institute of Plant Genome Research, New Delhi, India
| | - Birgit Arnholdt-Schmitt
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- CERNAS-Research Center for Natural Resources, Environment and Society, Department of Environment, Escola Superior Agrária de Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Seldimirova OA, Kudoyarova GR, Kruglova NN, Galin IR, Veselov DS. Somatic Embryogenesis in Wheat and Barley Calli in vitro Is Determined by the Level of Indoleacetic and Abscisic Acids. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419030056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, Avilez-Montalvo J, De-la-Peña C, Loyola-Vargas VM. Signaling Overview of Plant Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2019; 10:77. [PMID: 30792725 PMCID: PMC6375091 DOI: 10.3389/fpls.2019.00077] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/17/2019] [Indexed: 05/17/2023]
Abstract
Somatic embryogenesis (SE) is a means by which plants can regenerate bipolar structures from a somatic cell. During the process of cell differentiation, the explant responds to endogenous stimuli, which trigger the induction of a signaling response and, consequently, modify the gene program of the cell. SE is probably the most studied plant regeneration model, but to date it is the least understood due to the unclear mechanisms that occur at a cellular level. In this review, the authors seek to emphasize the importance of signaling on plant SE, highlighting the interactions between the different plant growth regulators (PGR), mainly auxins, cytokinins (CKs), ethylene and abscisic acid (ABA), during the induction of SE. The role of signaling is examined from the start of cell differentiation through the early steps on the embryogenic pathway, as well as its relation to a plant's tolerance of different types of stress. Furthermore, the role of genes encoded to transcription factors (TFs) during the embryogenic process such as the LEAFY COTYLEDON (LEC), WUSCHEL (WUS), BABY BOOM (BBM) and CLAVATA (CLV) genes, Arabinogalactan-proteins (AGPs), APETALA 2 (AP2) and epigenetic factors is discussed.
Collapse
Affiliation(s)
- Hugo A. Méndez-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Maharshi Ledezma-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Randy N. Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Yary L. Juárez-Gómez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Analesa Skeete
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Johny Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|
13
|
Hernández-Piedra G, Ruiz-Carrera V, Sánchez AJ, Hernández-Franyutti A, Azpeitia-Morales A. Morpho-histological development of the somatic embryos of Typha domingensis. PeerJ 2018; 6:e5952. [PMID: 30505633 PMCID: PMC6254243 DOI: 10.7717/peerj.5952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/18/2018] [Indexed: 01/01/2023] Open
Abstract
Background Sustainable methods of propagation of Typha domingensis through somatic embryogenesis can help mitigate its current condition of ecological marginalization and overexploitation. This study examined whether differentiation up to coleoptilar embryos could be obtained in an embryogenic line proliferated with light and high auxin concentration. Methods Murashige and Skoog medium at half ionic strength and containing 3% sucrose and 0.1% ascorbic acid was used for the three embryogenic phases. Induction started with aseptic 9-day-old germinated seeds cultured in 0.5 mg L−1 2,4-dichlorophenoxyacetic (2,4-D). Proliferation of the embryogenic callus was evaluated at 2,4-D concentrations ranging from 0 to 2 mg L−1 in cultures maintained in the dark. The dominant embryogenic products obtained in each treatment were used as embryogenic lines in the third phase. Thus, maturation of the somatic embryos (SEs) was analyzed using four embryogenic lines and under light vs. dark conditions. Embryogenic differentiation was also monitored histologically. Results Proliferation of the nine morphogenetic products was greater in the presence of 2,4-D, regardless of the concentration, than in the absence of auxin. Among the products, a yellow callus was invariably associated with the presence of an oblong SE and suspended cells in the 2,4-D treatments, and a brown callus with scutellar somatic embryos (scSEs) in the treatment without 2,4-D. During the maturation phase, especially the embryogenic line but also the light condition resulted in significant differences, with the highest averages of the nine morphogenetic products obtained under light conditions and the maximum concentration of auxin (YC3 embryogenic line). Only this line achieved scSE growth, under both light and dark conditions. Structurally complete coleoptilar somatic embryos (colSEs) could be anatomically confirmed only during the maturation phase. Discussion In the embryogenic line cultured with the highest auxin concentration, light exposure favored the transdifferentiation from embryogenic callus to scSE or colSE, although growth was asynchronous with respect to the three embryogenic phases. The differentiation and cellular organization of the embryos were compatible with all stages of embryogenic development in other monocotyledons. The growth of colSEs under light conditions in the YC3 embryogenic line and the structurally complete anatomic description of colSEs demonstrated that differentiation up to coleoptilar embryos could be obtained. The diversity of embryogenic products obtained in the YC3 embryogenic line opens up the opportunity to synchronize histological descriptions with the molecules associated with the somatic embryogenesis of Typha spp.
Collapse
Affiliation(s)
- Guadalupe Hernández-Piedra
- Programa de Maestría en Ciencias Ambientales, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Violeta Ruiz-Carrera
- Universidad Juárez Autónoma de Tabasco, Diagnóstico y Manejo de Humedales Tropicales, Villahermosa, Tabasco, México
| | - Alberto J Sánchez
- Universidad Juárez Autónoma de Tabasco, Diagnóstico y Manejo de Humedales Tropicales, Villahermosa, Tabasco, México
| | - Arlette Hernández-Franyutti
- Universidad Juárez Autónoma de Tabasco, Biología y Manejo de Organismos Acuáticos, Villahermosa, Tabasco, México
| | - Alfonso Azpeitia-Morales
- Campo Experimental Huimanguillo, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tabasco, México
| |
Collapse
|
14
|
Tsai CJ, Harding SA, Cooke JEK. Branching out: a new era of investigating physiological processes in forest trees using genomic tools. TREE PHYSIOLOGY 2018; 38:303-310. [PMID: 29506180 DOI: 10.1093/treephys/tpy026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, Department of Genetics and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Scott A Harding
- Warnell School of Forestry and Natural Resources, Department of Genetics and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| |
Collapse
|
15
|
Wójcik AM, Mosiolek M, Karcz J, Nodine MD, Gaj MD. Whole Mount in situ Localization of miRNAs and mRNAs During Somatic Embryogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1277. [PMID: 30233621 PMCID: PMC6131960 DOI: 10.3389/fpls.2018.01277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/15/2018] [Indexed: 05/11/2023]
Abstract
Somatic embryogenesis (SE) results from the transition of differentiated plant somatic cells into embryogenic cells that requires the extensive reprogramming of the somatic cell transcriptome. Commonly, the SE-involved genes are identified by analyzing the heterogeneous population of explant cells and thus, it is necessary to validate the expression of the candidate genes in the cells that are competent for embryogenic transition. Here, we optimized and implemented the whole mount in situ hybridization (WISH) method (Bleckmann and Dresselhaus, 2016; Dastidar et al., 2016) in order to analyze the spatiotemporal localization of miRNAs (miR156, miR166, miR390, miR167) and mRNAs such as WOX5 and PHABULOSA-target of miR165/166 during the SE that is induced in Arabidopsis explants. This study presents a detailed step-by-step description of the WISH procedure in which DIG-labeled LNA and RNA probes were used to detect miRNAs and mRNAs, respectively. The usefulness of the WISH in the functional analysis of the SE-involved regulatory pathways is demonstrated and the advantages of this method are highlighted: (i) the ability to analyze intact non-sectioned plant tissue; (ii) the specificity of transcript detection; (iii) the detection of miRNA; and (iv) a semi-quantitative assessment of the RNA abundance.
Collapse
Affiliation(s)
- Anna M. Wójcik
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Magdalena Mosiolek
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Jagna Karcz
- Scanning Electron Microscopy Laboratory, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Michael D. Nodine
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Małgorzata D. Gaj
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
- *Correspondence: Małgorzata D. Gaj,
| |
Collapse
|
16
|
Dobrowolska I, Businge E, Abreu IN, Moritz T, Egertsdotter U. Metabolome and transcriptome profiling reveal new insights into somatic embryo germination in Norway spruce (Picea abies). TREE PHYSIOLOGY 2017; 37:1752-1766. [PMID: 28985382 DOI: 10.1093/treephys/tpx078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/01/2017] [Indexed: 05/07/2023]
Abstract
Transcriptome, metabolome and histological profiling were performed on normal and aberrant somatic embryo germinants of Norway spruce (Picea abies L. Karst) providing a simplistic systems biology description of conifer germination. Aberrant germinants (AGs) formed periderm-like tissue at the apical pole and lacked shoot growth above the cotyledons. Transcriptome profiling (RNA-Sequencing) revealed a total of 370 differentially expressed genes at ≥1 or ≤-1 log2-fold change, where 92% were down-regulated in AGs compared with normal germinants (NGs). Genes associated with shoot apical meristem formation were down-regulated in AGs, or not differentially expressed between AGs and NGs. Genes involved in hormone signaling and transport were also down-regulated. Metabolite profiling by gas chromatography-mass spectrometry (MS) and liquid chromatography-MS revealed biochemical difference between AGs and NGs, notably increased levels of sugars including glucose in AGs. Genes involved in glucose signaling were down-regulated and genes involved in starch biosynthesis were up-regulated, suggesting involvement of sugar signaling during late embryo development and germination. The overall results provide new data enabling further studies to confirm potential markers for a normal germination process in conifers.
Collapse
Affiliation(s)
- Izabela Dobrowolska
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Center (UPSC), 901 83 Umeå, Sweden
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Edward Businge
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Center (UPSC), 901 83 Umeå, Sweden
| | - Ilka N Abreu
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Center (UPSC), 901 83 Umeå, Sweden
- Swedish Metabolomics Centre, Umeå Plant Science Center (UPSC), 901 83 Umeå, Sweden
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Center (UPSC), 901 83 Umeå, Sweden
- Swedish Metabolomics Centre, Umeå Plant Science Center (UPSC), 901 83 Umeå, Sweden
| | - Ulrika Egertsdotter
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Center (UPSC), 901 83 Umeå, Sweden
| |
Collapse
|
17
|
Wójcikowska B, Gaj MD. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis. PLANT CELL REPORTS 2017; 36:843-858. [PMID: 28255787 PMCID: PMC5486788 DOI: 10.1007/s00299-017-2114-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/01/2017] [Indexed: 05/18/2023]
Abstract
Extensive modulation of numerous ARF transcripts in the embryogenic culture of Arabidopsis indicates a substantial role of auxin signaling in the mechanism of somatic embryogenesis induction. Somatic embryogenesis (SE) is induced by auxin in plants and auxin signaling is considered to play a key role in the molecular mechanism that controls the embryogenic transition of plant somatic cells. Accordingly, the expression of AUXIN RESPONSE FACTOR (ARF) genes in embryogenic culture of Arabidopsis was analyzed. The study revealed that 14 of the 22 ARFs were transcribed during SE in Arabidopsis. RT-qPCR analysis indicated that the expression of six ARFs (ARF5, ARF6, ARF8, ARF10, ARF16, and ARF17) was significantly up-regulated, whereas five other genes (ARF1, ARF2, ARF3, ARF11, and ARF18) were substantially down-regulated in the SE-induced explants. The activity of ARFs during SE was also monitored with GFP reporter lines and the ARFs that were expressed in areas of the explants engaged in SE induction were detected. A functional test of ARFs transcribed during SE was performed and the embryogenic potential of the arf mutants and overexpressor lines was evaluated. ARFs with a significantly modulated expression during SE coupled with an impaired embryogenic response of the relevant mutant and/or overexpressor line, including ARF1, ARF2, ARF3, ARF5, ARF6, ARF8, and ARF11 were indicated as possibly being involved in SE induction. The study provides evidence that embryogenic induction strongly depends on ARFs, which are key regulators of the auxin signaling. Some clues on the possible functions of the candidate ARFs, especially ARF5, in the mechanism of embryogenic transition are discussed. The results provide guidelines for further research on the auxin-related functional genomics of SE and the developmental plasticity of somatic cells.
Collapse
Affiliation(s)
- Barbara Wójcikowska
- Department of Genetics, University of Silesia, ul. Jagiellońska 28, 40-032, Katowice, Poland
| | - Małgorzata D Gaj
- Department of Genetics, University of Silesia, ul. Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|