1
|
Using proteomic and transcriptomic data to assess activation of intracellular molecular pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:1-53. [PMID: 34340765 DOI: 10.1016/bs.apcsb.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analysis of molecular pathway activation is the recent instrument that helps to quantize activities of various intracellular signaling, structural, DNA synthesis and repair, and biochemical processes. This may have a deep impact in fundamental research, bioindustry, and medicine. Unlike gene ontology analyses and numerous qualitative methods that can establish whether a pathway is affected in principle, the quantitative approach has the advantage of exactly measuring the extent of a pathway up/downregulation. This results in emergence of a new generation of molecular biomarkers-pathway activation levels, which reflect concentration changes of all measurable pathway components. The input data can be the high-throughput proteomic or transcriptomic profiles, and the output numbers take both positive and negative values and positively reflect overall pathway activation. Due to their nature, the pathway activation levels are more robust biomarkers compared to the individual gene products/protein levels. Here, we review the current knowledge of the quantitative gene expression interrogation methods and their applications for the molecular pathway quantization. We consider enclosed bioinformatic algorithms and their applications for solving real-world problems. Besides a plethora of applications in basic life sciences, the quantitative pathway analysis can improve molecular design and clinical investigations in pharmaceutical industry, can help finding new active biotechnological components and can significantly contribute to the progressive evolution of personalized medicine. In addition to the theoretical principles and concepts, we also propose publicly available software for the use of large-scale protein/RNA expression data to assess the human pathway activation levels.
Collapse
|
2
|
Buzdin A, Sorokin M, Garazha A, Glusker A, Aleshin A, Poddubskaya E, Sekacheva M, Kim E, Gaifullin N, Giese A, Seryakov A, Rumiantsev P, Moshkovskii S, Moiseev A. RNA sequencing for research and diagnostics in clinical oncology. Semin Cancer Biol 2019; 60:311-323. [PMID: 31412295 DOI: 10.1016/j.semcancer.2019.07.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022]
Abstract
Molecular diagnostics is becoming one of the major drivers of personalized oncology. With hundreds of different approved anticancer drugs and regimens of their administration, selecting the proper treatment for a patient is at least nontrivial task. This is especially sound for the cases of recurrent and metastatic cancers where the standard lines of therapy failed. Recent trials demonstrated that mutation assays have a strong limitation in personalized selection of therapeutics, consequently, most of the drugs cannot be ranked and only a small percentage of patients can benefit from the screening. Other approaches are, therefore, needed to address a problem of finding proper targeted therapies. The analysis of RNA expression (transcriptomic) profiles presents a reasonable solution because transcriptomics stands a few steps closer to tumor phenotype than the genome analysis. Several recent studies pioneered using transcriptomics for practical oncology and showed truly encouraging clinical results. The possibility of directly measuring of expression levels of molecular drugs' targets and profiling activation of the relevant molecular pathways enables personalized prioritizing for all types of molecular-targeted therapies. RNA sequencing is the most robust tool for the high throughput quantitative transcriptomics. Its use, potentials, and limitations for the clinical oncology will be reviewed here along with the technical aspects such as optimal types of biosamples, RNA sequencing profile normalization, quality controls and several levels of data analysis.
Collapse
Affiliation(s)
- Anton Buzdin
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Omicsway Corp., Walnut, CA, USA; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | - Maxim Sorokin
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Omicsway Corp., Walnut, CA, USA; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | - Alex Aleshin
- Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Elena Poddubskaya
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Vitamed Oncological Clinics, Moscow, Russia
| | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ella Kim
- Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nurshat Gaifullin
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
| | | | | | | | - Sergey Moshkovskii
- Institute of Biomedical Chemistry, Moscow, 119121, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, 117997, Russia
| | - Alexey Moiseev
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|