1
|
De Coster T, Teplenin AS, Feola I, Bart CI, Ramkisoensing AA, den Ouden BL, Ypey DL, Trines SA, Panfilov AV, Zeppenfeld K, de Vries AAF, Pijnappels DA. 'Trapped re-entry' as source of acute focal atrial arrhythmias. Cardiovasc Res 2024; 120:249-261. [PMID: 38048392 PMCID: PMC10939464 DOI: 10.1093/cvr/cvad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 08/21/2023] [Accepted: 10/07/2023] [Indexed: 12/06/2023] Open
Abstract
AIMS Diseased atria are characterized by functional and structural heterogeneities, adding to abnormal impulse generation and propagation. These heterogeneities are thought to lie at the origin of fractionated electrograms recorded during sinus rhythm (SR) in atrial fibrillation (AF) patients and are assumed to be involved in the onset and perpetuation (e.g. by re-entry) of this disorder. The underlying mechanisms, however, remain incompletely understood. Here, we tested whether regions of dense fibrosis could create an electrically isolated conduction pathway (EICP) in which re-entry could be established via ectopy and local block to become 'trapped'. We also investigated whether this could generate local fractionated electrograms and whether the re-entrant wave could 'escape' and cause a global tachyarrhythmia due to dynamic changes at a connecting isthmus. METHODS AND RESULTS To precisely control and explore the geometrical properties of EICPs, we used light-gated depolarizing ion channels and patterned illumination for creating specific non-conducting regions in silico and in vitro. Insight from these studies was used for complementary investigations in virtual human atria with localized fibrosis. We demonstrated that a re-entrant tachyarrhythmia can exist locally within an EICP with SR prevailing in the surrounding tissue and identified conditions under which re-entry could escape from the EICP, thereby converting a local latent arrhythmic source into an active driver with global impact on the heart. In a realistic three-dimensional model of human atria, unipolar epicardial pseudo-electrograms showed fractionation at the site of 'trapped re-entry' in coexistence with regular SR electrograms elsewhere in the atria. Upon escape of the re-entrant wave, acute arrhythmia onset was observed. CONCLUSIONS Trapped re-entry as a latent source of arrhythmogenesis can explain the sudden onset of focal arrhythmias, which are able to transgress into AF. Our study might help to improve the effectiveness of ablation of aberrant cardiac electrical signals in clinical practice.
Collapse
Affiliation(s)
- Tim De Coster
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Alexander S Teplenin
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Iolanda Feola
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Cindy I Bart
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Arti A Ramkisoensing
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Bram L den Ouden
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Dirk L Ypey
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Serge A Trines
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Alexander V Panfilov
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
- Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
- Biomed Laboratory, Ural Federal University, 620002 Ekaterinburg, Russia
- World-Class Research Center ‘Digital Biodesign and Personalized Healthcare’, I. M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Katja Zeppenfeld
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
2
|
Portero V, Deng S, Boink GJJ, Zhang GQ, de Vries A, Pijnappels DA. Optoelectronic control of cardiac rhythm: Toward shock-free ambulatory cardioversion of atrial fibrillation. J Intern Med 2024; 295:126-145. [PMID: 37964404 DOI: 10.1111/joim.13744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, progressive in nature, and known to have a negative impact on mortality, morbidity, and quality of life. Patients requiring acute termination of AF to restore sinus rhythm are subjected to electrical cardioversion, which requires sedation and therefore hospitalization due to pain resulting from the electrical shocks. However, considering the progressive nature of AF and its detrimental effects, there is a clear need for acute out-of-hospital (i.e., ambulatory) cardioversion of AF. In the search for shock-free cardioversion methods to realize such ambulatory therapy, a method referred to as optogenetics has been put forward. Optogenetics enables optical control over the electrical activity of cardiomyocytes by targeted expression of light-activated ion channels or pumps and may therefore serve as a means for cardioversion. First proof-of-principle for such light-induced cardioversion came from in vitro studies, proving optogenetic AF termination to be very effective. Later, these results were confirmed in various rodent models of AF using different transgenes, illumination methods, and protocols, whereas computational studies in the human heart provided additional translational insight. Based on these results and fueled by recent advances in molecular biology, gene therapy, and optoelectronic engineering, a basis is now being formed to explore clinical translations of optoelectronic control of cardiac rhythm. In this review, we discuss the current literature regarding optogenetic cardioversion of AF to restore normal rhythm in a shock-free manner. Moreover, key translational steps will be discussed, both from a biological and technological point of view, to outline a path toward realizing acute shock-free ambulatory termination of AF.
Collapse
Affiliation(s)
- Vincent Portero
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Shanliang Deng
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Guo Qi Zhang
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Antoine de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
3
|
Ördög B, Teplenin A, De Coster T, Bart CI, Dekker SO, Zhang J, Ypey DL, de Vries AAF, Pijnappels DA. The Effects of Repetitive Use and Pathological Remodeling on Channelrhodopsin Function in Cardiomyocytes. Front Physiol 2021; 12:710020. [PMID: 34539432 PMCID: PMC8448166 DOI: 10.3389/fphys.2021.710020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: Channelrhodopsins (ChRs) are a large family of light-gated ion channels with distinct properties, which is of great importance in the selection of a ChR variant for a given application. However, data to guide such selection for cardiac optogenetic applications are lacking. Therefore, we investigated the functioning of different ChR variants in normal and pathological hypertrophic cardiomyocytes subjected to various illumination protocols. Methods and Results: Isolated neonatal rat ventricular cardiomyocytes (NRVMs) were transduced with lentiviral vectors to express one of the following ChR variants: H134R, CatCh, ReaChR, or GtACR1. NRVMs were treated with phenylephrine (PE) to induce pathological hypertrophy (PE group) or left untreated [control (CTL) group]. In these groups, ChR currents displayed unique and significantly different properties for each ChR variant on activation by a single 1-s light pulse (1 mW/mm2: 470, 565, or 617 nm). The concomitant membrane potential (Vm) responses also showed a ChR variant-specific profile, with GtACR1 causing a slight increase in average Vm during illumination (Vplateau: −38 mV) as compared with a Vplateau > −20 mV for the other ChR variants. On repetitive activation at increasing frequencies (10-ms pulses at 1–10 Hz for 30 s), peak currents, which are important for cardiac pacing, decreased with increasing activation frequencies by 17–78% (p < 0.05), while plateau currents, which are critical for arrhythmia termination, decreased by 10–75% (p < 0.05), both in a variant-specific manner. In contrast, the corresponding Vplateau remained largely stable. Importantly, current properties and Vm responses were not statistically different between the PE and CTL groups, irrespective of the variant used (p > 0.05). Conclusion: Our data show that ChR variants function equally well in cell culture models of healthy and pathologically hypertrophic myocardium but show strong, variant-specific use-dependence. This use-dependent nature of ChR function should be taken into account during the design of cardiac optogenetic studies and the interpretation of the experimental findings thereof.
Collapse
Affiliation(s)
- Balázs Ördög
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Alexander Teplenin
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Tim De Coster
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Cindy I Bart
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Sven O Dekker
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Juan Zhang
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk L Ypey
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Abstract
The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.
Collapse
|
5
|
Majumder R, De Coster T, Kudryashova N, Verkerk AO, Kazbanov IV, Ördög B, Harlaar N, Wilders R, de Vries AA, Ypey DL, Panfilov AV, Pijnappels DA. Self-restoration of cardiac excitation rhythm by anti-arrhythmic ion channel gating. eLife 2020; 9:55921. [PMID: 32510321 PMCID: PMC7316504 DOI: 10.7554/elife.55921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Homeostatic regulation protects organisms against hazardous physiological changes. However, such regulation is limited in certain organs and associated biological processes. For example, the heart fails to self-restore its normal electrical activity once disturbed, as with sustained arrhythmias. Here we present proof-of-concept of a biological self-restoring system that allows automatic detection and correction of such abnormal excitation rhythms. For the heart, its realization involves the integration of ion channels with newly designed gating properties into cardiomyocytes. This allows cardiac tissue to i) discriminate between normal rhythm and arrhythmia based on frequency-dependent gating and ii) generate an ionic current for termination of the detected arrhythmia. We show in silico, that for both human atrial and ventricular arrhythmias, activation of these channels leads to rapid and repeated restoration of normal excitation rhythm. Experimental validation is provided by injecting the designed channel current for arrhythmia termination in human atrial myocytes using dynamic clamp.
Collapse
Affiliation(s)
- Rupamanjari Majumder
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Tim De Coster
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands.,Department of Physics and Astronomy, Ghent University, Ghent, Belgium.,Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Nina Kudryashova
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands.,Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam UMC, Amsterdam, Netherlands
| | - Ivan V Kazbanov
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Balázs Ördög
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Niels Harlaar
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands
| | - Antoine Af de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk L Ypey
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Alexander V Panfilov
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands.,Department of Physics and Astronomy, Ghent University, Ghent, Belgium.,Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russian Federation
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
van Gorp PRR, Trines SA, Pijnappels DA, de Vries AAF. Multicellular In vitro Models of Cardiac Arrhythmias: Focus on Atrial Fibrillation. Front Cardiovasc Med 2020; 7:43. [PMID: 32296716 PMCID: PMC7138102 DOI: 10.3389/fcvm.2020.00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice with a large socioeconomic impact due to its associated morbidity, mortality, reduction in quality of life and health care costs. Currently, antiarrhythmic drug therapy is the first line of treatment for most symptomatic AF patients, despite its limited efficacy, the risk of inducing potentially life-threating ventricular tachyarrhythmias as well as other side effects. Alternative, in-hospital treatment modalities consisting of electrical cardioversion and invasive catheter ablation improve patients' symptoms, but often have to be repeated and are still associated with serious complications and only suitable for specific subgroups of AF patients. The development and progression of AF generally results from the interplay of multiple disease pathways and is accompanied by structural and functional (e.g., electrical) tissue remodeling. Rational development of novel treatment modalities for AF, with its many different etiologies, requires a comprehensive insight into the complex pathophysiological mechanisms. Monolayers of atrial cells represent a simplified surrogate of atrial tissue well-suited to investigate atrial arrhythmia mechanisms, since they can easily be used in a standardized, systematic and controllable manner to study the role of specific pathways and processes in the genesis, perpetuation and termination of atrial arrhythmias. In this review, we provide an overview of the currently available two- and three-dimensional multicellular in vitro systems for investigating the initiation, maintenance and termination of atrial arrhythmias and AF. This encompasses cultures of primary (animal-derived) atrial cardiomyocytes (CMs), pluripotent stem cell-derived atrial-like CMs and (conditionally) immortalized atrial CMs. The strengths and weaknesses of each of these model systems for studying atrial arrhythmias will be discussed as well as their implications for future studies.
Collapse
Affiliation(s)
| | | | | | - Antoine A. F. de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
Liu J, Volkers L, Jangsangthong W, Bart CI, Engels MC, Zhou G, Schalij MJ, Ypey DL, Pijnappels DA, de Vries AAF. Generation and primary characterization of iAM-1, a versatile new line of conditionally immortalized atrial myocytes with preserved cardiomyogenic differentiation capacity. Cardiovasc Res 2019; 114:1848-1859. [PMID: 29917042 PMCID: PMC6255688 DOI: 10.1093/cvr/cvy134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/13/2018] [Indexed: 01/15/2023] Open
Abstract
Aims The generation of homogeneous cardiomyocyte populations from fresh tissue or stem cells is laborious and costly. A potential solution to this problem would be to establish lines of immortalized cardiomyocytes. However, as proliferation and (terminal) differentiation of cardiomyocytes are mutually exclusive processes, their permanent immortalization causes loss of electrical and mechanical functions. We therefore aimed at developing conditionally immortalized atrial myocyte (iAM) lines allowing toggling between proliferative and contractile phenotypes by a single-component change in culture medium composition. Methods and results Freshly isolated neonatal rat atrial cardiomyocytes (AMs) were transduced with a lentiviral vector conferring doxycycline (dox)-controlled expression of simian virus 40 large T antigen. Under proliferative conditions (i.e. in the presence of dox), the resulting cells lost most cardiomyocyte traits and doubled every 38 h. Under differentiation conditions (i.e. in the absence of dox), the cells stopped dividing and spontaneously reacquired a phenotype very similar to that of primary AMs (pAMs) in gene expression profile, sarcomeric organization, contractile behaviour, electrical properties, and response to ion channel-modulating compounds (as assessed by patch-clamp and optical voltage mapping). Moreover, differentiated iAMs had much narrower action potentials and propagated them at >10-fold higher speeds than the widely used murine atrial HL-1 cells. High-frequency electrical stimulation of confluent monolayers of differentiated iAMs resulted in re-entrant conduction resembling atrial fibrillation, which could be prevented by tertiapin treatment, just like in monolayers of pAMs. Conclusion Through controlled expansion and differentiation of AMs, large numbers of functional cardiomyocytes were generated with properties superior to the differentiated progeny of existing cardiomyocyte lines. iAMs provide an attractive new model system for studying cardiomyocyte proliferation, differentiation, metabolism, and (electro)physiology as well as to investigate cardiac diseases and drug responses, without using animals.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands.,Department of Cell Biology and Genetics, Center for Anti-ageing and Regenerative Medicine, Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen University, Nanhai Ave 3688, Shenzhen, China.,Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Linda Volkers
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Wanchana Jangsangthong
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Cindy I Bart
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Marc C Engels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Guangqian Zhou
- Department of Cell Biology and Genetics, Center for Anti-ageing and Regenerative Medicine, Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen University, Nanhai Ave 3688, Shenzhen, China
| | - Martin J Schalij
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Dirk L Ypey
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands.,Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| |
Collapse
|
8
|
Jiang C, Li HT, Zhou YM, Wang X, Wang L, Liu ZQ. Cardiac optogenetics: a novel approach to cardiovascular disease therapy. Europace 2019; 20:1741-1749. [PMID: 29253159 DOI: 10.1093/europace/eux345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022] Open
Abstract
Optogenetics is a cell-type specific and high spatial-temporal resolution method that combines genetic encoding of light-sensitive proteins and optical manipulation techniques. Optogenetics technology provides a novel approach for research on cardiac arrhythmia treatment, including pacing, recovering the conduction system, and achieving cardiac resynchronization with precise and low-energy optical control. Photosensitive proteins, which usually act as ion channels, pumps, or receptors, are delivered to target cells, where they respond to light pulses of specific wavelengths, evoke transient flows of transmembrane ion currents, and induce signal transmission. With the development of gene technology, the in vivo efficiency of optogenetics in cardiology has been trialed, and in vitro experiments have been performed to test its potential in cardiac electrophysiology. Challenges for applying optogenetics in large animals and humans include the effectiveness, safety, and long-term expression of photosensitive proteins, unscattered and unattenuated exogenous light stimulation, and the need for implantable miniature light stimulators. Photosensitive proteins, genetic engineering technology, and light equipment are essential for experiments in cardiac optogenetics. Optogenetics may provide an alternative method for evaluating the mechanism of cardiac arrhythmias, testing hypotheses, and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Chan Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Hai Tao Li
- Department of Cardiology, Hainan General Hospital, Haikou, PR China
| | - Yong Ming Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Zi Qiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
9
|
Boyle PM, Murphy MJ, Karathanos TV, Zahid S, Blake RC, Trayanova NA. Termination of re-entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models. J Physiol 2017; 596:181-196. [PMID: 29193078 DOI: 10.1113/jp275264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Optogenetics has emerged as a potential alternative to electrotherapy for treating heart rhythm disorders, but its applicability for terminating atrial arrhythmias remains largely unexplored. We used computational models reconstructed from clinical MRI scans of fibrotic patient atria to explore the feasibility of optogenetic termination of atrial tachycardia (AT), comparing two different illumination strategies: distributed vs. targeted. We show that targeted optogenetic stimulation based on automated, non-invasive flow-network analysis of patient-specific re-entry morphology may be a reliable approach for identifying the optimal illumination target in each individual (i.e. the critical AT isthmus). The above-described approach yields very high success rates (up to 100%) and requires dramatically less input power than distributed illumination We conclude that simulations in patient-specific models show that targeted light pulses lasting longer than the AT cycle length can efficiently and reliably terminate AT if the human atria can be successfully light-sensitized via gene delivery of ChR2. ABSTRACT Optogenetics has emerged as a potential alternative to electrotherapy for treating arrhythmia, but feasibility studies have been limited to ventricular defibrillation via epicardial light application. Here, we assess the efficacy of optogenetic atrial tachycardia (AT) termination in human hearts using a strategy that targets for illumination specific regions identified in an automated manner. In three patient-specific models reconstructed from late gadolinium-enhanced MRI scans, we simulated channelrhodopsin-2 (ChR2) expression via gene delivery. In all three models, we attempted to terminate re-entrant AT (induced via rapid pacing) via optogenetic stimulation. We compared two strategies: (1) distributed illumination of the endocardium by multi-optrode grids (number of optrodes, Nopt = 64, 128, 256) and (2) targeted illumination of the critical isthmus, which was identified via analysis of simulated activation patterns using an algorithm based on flow networks. The illuminated area and input power were smaller for the targeted approach (19-57.8 mm2 ; 0.6-1.8 W) compared to the sparsest distributed arrays (Nopt = 64; 124.9 ± 6.3 mm2 ; 3.9 ± 0.2 W). AT termination rates for distributed illumination were low, ranging from <5% for short pulses (1/10 ms long) to ∼20% for longer stimuli (100/1000 ms). When we attempted to terminate the same AT episodes with targeted illumination, outcomes were similar for short pulses (1/10 ms long: 0% success) but improved for longer stimuli (100 ms: 54% success; 1000 ms: 90% success). We conclude that simulations in patient-specific models show that light pulses lasting longer than the AT cycle length can efficiently and reliably terminate AT in atria light-sensitized via gene delivery. We show that targeted optogenetic stimulation based on analysis of AT morphology may be a reliable approach for defibrillation and requires less power than distributed illumination.
Collapse
Affiliation(s)
- Patrick M Boyle
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J Murphy
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas V Karathanos
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sohail Zahid
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Robert C Blake
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Feola I, Volkers L, Majumder R, Teplenin A, Schalij MJ, Panfilov AV, de Vries AAF, Pijnappels DA. Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayers. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.005591. [PMID: 29097406 DOI: 10.1161/circep.117.005591] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recently, a new ablation strategy for atrial fibrillation has emerged, which involves the identification of rotors (ie, local drivers) followed by the localized targeting of their core region by ablation. However, this concept has been subject to debate because the mode of arrhythmia termination remains poorly understood, as dedicated models and research tools are lacking. We took a unique optogenetic approach to induce and locally target a rotor in atrial monolayers. METHODS AND RESULTS Neonatal rat atrial cardiomyocyte monolayers expressing a depolarizing light-gated ion channel (Ca2+-translocating channelrhodopsin) were subjected to patterned illumination to induce single, stable, and centralized rotors by optical S1-S2 cross-field stimulation. Next, the core region of these rotors was specifically and precisely targeted by light to induce local conduction blocks of circular or linear shapes. Conduction blocks crossing the core region, but not reaching any unexcitable boundary, did not lead to termination. Instead, electric waves started to propagate along the circumference of block, thereby maintaining reentrant activity, although of lower frequency. If, however, core-spanning lines of block reached at least 1 unexcitable boundary, reentrant activity was consistently terminated by wave collision. Lines of block away from the core region resulted merely in rotor destabilization (ie, drifting). CONCLUSIONS Localized optogenetic targeting of rotors in atrial monolayers could lead to both stabilization and destabilization of reentrant activity. For termination, however, a line of block is required reaching from the core region to at least 1 unexcitable boundary. These findings may improve our understanding of the mechanisms involved in rotor-guided ablation.
Collapse
Affiliation(s)
- Iolanda Feola
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Linda Volkers
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Rupamanjari Majumder
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Alexander Teplenin
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Martin J Schalij
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Alexander V Panfilov
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Antoine A F de Vries
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Daniël A Pijnappels
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.).
| |
Collapse
|