1
|
Méndez-Ferrer S. RIG-Ing out BMSCs for hematopoietic recovery after transplantation. Blood 2022; 139:3107-3109. [PMID: 35616989 DOI: 10.1182/blood.2022016099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
|
2
|
Gnani D, Crippa S, della Volpe L, Rossella V, Conti A, Lettera E, Rivis S, Ometti M, Fraschini G, Bernardo ME, Di Micco R. An early-senescence state in aged mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell clonogenic impairment through the activation of a pro-inflammatory program. Aging Cell 2019; 18:e12933. [PMID: 30828977 PMCID: PMC6516180 DOI: 10.1111/acel.12933] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/22/2019] [Accepted: 02/02/2019] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPC) reside in the bone marrow (BM) niche and serve as a reservoir for mature blood cells throughout life. Aging in the BM is characterized by low‐grade chronic inflammation that could contribute to the reduced functionality of aged HSPC. Mesenchymal stromal cells (MSC) in the BM support HSPC self‐renewal. However, changes in MSC function with age and the crosstalk between MSC and HSPC remain understudied. Here, we conducted an extensive characterization of senescence features in BM‐derived MSC from young and aged healthy donors. Aged MSC displayed an enlarged senescent‐like morphology, a delayed clonogenic potential and reduced proliferation ability when compared to younger counterparts. Of note, the observed proliferation delay was associated with increased levels of SA‐β‐galactosidase (SA‐β‐Gal) and lipofuscin in aged MSC at early passages and a modest but consistent accumulation of physical DNA damage and DNA damage response (DDR) activation. Consistent with the establishment of a senescence‐like state in aged MSC, we detected an increase in pro‐inflammatory senescence‐associated secretory phenotype (SASP) factors, both at the transcript and protein levels. Conversely, the immunomodulatory properties of aged MSC were significantly reduced. Importantly, exposure of young HSPC to factors secreted by aged MSC induced pro‐inflammatory genes in HSPC and impaired HSPC clonogenic potential in a SASP‐dependent manner. Altogether, our results reveal that BM‐derived MSC from aged healthy donors display features of senescence and that, during aging, MSC‐associated secretomes contribute to activate an inflammatory transcriptional program in HSPC that may ultimately impair their functionality.
Collapse
Affiliation(s)
- Daniela Gnani
- San Raffaele Telethon Institute for Gene Therapy Milan Italy
| | - Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy Milan Italy
| | - Lucrezia della Volpe
- San Raffaele Telethon Institute for Gene Therapy Milan Italy
- Vita‐Salute San Raffaele University Milan Italy
| | | | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy Milan Italy
| | - Emanuele Lettera
- San Raffaele Telethon Institute for Gene Therapy Milan Italy
- Vita‐Salute San Raffaele University Milan Italy
| | - Silvia Rivis
- San Raffaele Telethon Institute for Gene Therapy Milan Italy
| | - Marco Ometti
- Department of Orthopedics and Traumatology San Raffaele Hospital Scientific Institute Milan Italy
| | - Gianfranco Fraschini
- Department of Orthopedics and Traumatology San Raffaele Hospital Scientific Institute Milan Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy Milan Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit San Raffaele Scientific Institute Milan Italy
| | | |
Collapse
|
3
|
Pashoutan Sarvar D, Karimi MH, Movassaghpour A, Akbarzadehlaleh P, Aqmasheh S, Timari H, Shamsasenjan K. The Effect of Mesenchymal Stem Cell-Derived Microvesicles on Erythroid Differentiation of Umbilical Cord Blood-Derived CD34 + Cells. Adv Pharm Bull 2018; 8:291-296. [PMID: 30023331 PMCID: PMC6046427 DOI: 10.15171/apb.2018.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
Abstract
Purpose: Mesenchymal stem cells (MSCs) play an important role in the proliferation and differentiation of hematopoietic stem cells (HSCs) in the bone marrow via cell-to-cell contact, as well as secretion of cytokines and microvesicles (MVs). In this study, we investigated the effect of mesenchymal stem cell-derived microvesicles (MSC-MVs) on erythroid differentiation of umbilical cord blood-derived CD34+ cells. Methods: In this descriptive study, CD34+ cells were cultured with mixture of SCF (10 ng/ml) and rhEPO (5 U/ml) cytokines in complete IMDM medium as positive control group. Then, in MV1- and MV2-groups, microvesicles at 10 and 20 µg/ml concentration were added. After 72 hours, erythroid specific markers (CD71 and CD235a) and genes (HBG1, GATA1, FOG1 and NFE2) were assessed by flow cytometry and qRT-PCR, respectively. Results: The expression of specific markers of the erythroid lineages (CD71 and GPA) in the presence of different concentration of microvesicles were lower than that of the control group (P<0.001). Also, the expression of specific genes of the erythroid lineages (NFE2, FOG1, GATA1, and HBG1) was investigated in comparison to the internal control (GAPDH). Among all of them, HBG1 and FOG1 genes were significantly decreased to the control group (P<0.0001) but GATA1 and NFE2 gene expressions was not significant. Conclusion: The results of this study showed that MSC-MVs decrease the erythroid differentiation of umbilical cord blood-derived CD34+ cells. Therefore, MSC-MVs play a key role in the regulation of normal erythropoiesis.
Collapse
Affiliation(s)
| | | | - Aliakbar Movassaghpour
- Hematology & Blood Banking, Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Aqmasheh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamze Timari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Ran LJ, Zeng Y, Wang SC, Zhang DS, Hong M, Li SY, Dong J, Shi MX. Effect of co‑culture with amniotic epithelial cells on the biological characteristics of amniotic mesenchymal stem cells. Mol Med Rep 2018; 18:723-732. [PMID: 29845205 DOI: 10.3892/mmr.2018.9053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effect of co‑culture with amniotic epithelial cells (AECs) on the biological characteristics of amniotic mesenchymal stem cells (AMSCs), to compare the expression of C‑X‑C motif chemokine receptor 4 (CXCR4) in co‑cultured AMSCs and to investigate the roles of the stromal cell‑derived factor‑1 (SDF‑1)/CXCR4 axis in the homing and migration of AMSCs. AMSCs were isolated from human amniotic membranes, purified and then differentiated into osteoblasts and adipocytes in vitro, which was verified by von Kossa Staining and Oil Red O staining. Cell viability was measured by Cell Counting kit‑8 and trypan blue assays at 24, 48 and 72 h, the expression of CXCR4 was analyzed by immunofluorescence‑based flow cytometry and reverse transcription‑quantitative polymerase chain reaction, and the migration ability of AMSCs in vitro was observed by a migration assay. The results demonstrated that cell viability (at 48 and 72 h) and survival (at 24, 48 and 72 h) in the co‑culture and serum groups were higher compared with the serum‑free group. Furthermore, CXCR4 mRNA and protein expression, and migration along the SDF‑1 gradient, in the co‑culture and serum‑free groups were higher compared with the serum group. Overall, the results indicated that AMSCs co‑cultured with AECs exhibited enhanced proliferation activity and survival rate. In conclusion, the present study demonstrated that co‑culture of AMSCs with AECs upregulated CXCR4 on the surface of AMSCs and enhanced the migration ability of AMSCs in vitro. This result may improve the directional migration and homing ability of AMSCs, as well as provide a theoretical basis for the application of AMSCs in clinical practice as a novel strategy to increase the success of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Li-Jing Ran
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Yun Zeng
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Shao-Chun Wang
- Department of Ultrasonography, The Affiliated Hospital of Jining Medical College, Jining, Shandong 272000, P.R. China
| | - Di-Si Zhang
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Min Hong
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shao-You Li
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jian Dong
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Ming-Xia Shi
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
5
|
Ghasemzadeh M, Hosseini E, Ahmadi M, Kamalizad M, Amirizadeh N. Comparable osteogenic capacity of mesenchymal stem or stromal cells derived from human amnion membrane and bone marrow. Cytotechnology 2018; 70:729-739. [PMID: 29305674 DOI: 10.1007/s10616-017-0177-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022] Open
Abstract
So far, substantial attentions have been attracted to the application of mesenchymal stem or stromal cells (MSCs) in different therapeutic approaches. Although human bone marrow is commonly considered as a major source for MSCs, having an invasive collection method, ethical consideration and donor availability create a challenge for scientists, leading them to explore better alternative sources for MSCs. The study presented here aimed to characterize and compare osteogenic capacity of MSCs obtained from the amnion membrane (AM) with those originated from BM. Cells isolated from AMs and BMs were cultured in DMEM-low glucose supplemented with FBS, penicillin and streptomycin. After 24 h of incubation, cells adhered to the plastic surface of the flasks were allowed to proliferate for more days. A sub-confluent culture of cells was trypsinized and re-cultured. The MSCs were characterized by the expression of specific markers with flow cytometry. The osteogenic differentiation of MSCs was also validated by alkaline phosphatase and alizarian red S staining. Our results showed comparable expression of MSCs specific markers for both MSC sources (AM and BM). We also showed the optimum osteogenic differentiation of MSCs from both sources whereas hAM-MSCs revealed higher proliferation rate. We found no essential immunophenotypic differences between MSCs originated from bone marrow and amnion membrane while their differentiations into osteoblastic linage were also comparable. This was in addition to the higher proliferation rate observed for hAM-MSCs which suggests hAM as an easily accessible and reliable source of MSCs applicable for bone engineering, regenerative medicine or other therapeutic approaches.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Express Way, Next to the Milad Tower, Tehran, 14665-1157, Iran
| | - Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Express Way, Next to the Milad Tower, Tehran, 14665-1157, Iran.
| | - Mohammadhossein Ahmadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Express Way, Next to the Milad Tower, Tehran, 14665-1157, Iran
| | - Maedeh Kamalizad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Express Way, Next to the Milad Tower, Tehran, 14665-1157, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Express Way, Next to the Milad Tower, Tehran, 14665-1157, Iran
| |
Collapse
|
6
|
Cirillo M, Tan P, Sturm M, Cole C. Cellular Immunotherapy for Hematologic Malignancies: Beyond Bone Marrow Transplantation. Biol Blood Marrow Transplant 2017; 24:433-442. [PMID: 29102721 DOI: 10.1016/j.bbmt.2017.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Immunotherapy has changed treatment practices for many hematologic malignancies. Even in the current era of targeted therapy, chemotherapy remains the backbone of treatment for many hematologic malignancies, especially in acute leukemias, where relapse remains the major cause of mortality. Application of novel immunotherapies in hematology attempts to harness the killing power of the immune system against leukemia and lymphoma. Cellular immunotherapy is evolving rapidly for high-risk hematologic disorders. Recent advances include chimeric antigen-receptor T cells, mesenchymal stromal/stem cells, dendritic cell tumor vaccines, cytokine-induced killer cells, and virus-specific T cells. The advantages of nontransplantation cellular immunotherapy include suitability for patients for whom transplantation has failed or is contraindicated, and a potentially less-toxic treatment alternative to transplantation for relapsed/refractory patients. This review examines those emerging cellular immunotherapies that are changing treatment paradigms for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Melita Cirillo
- Department of Haematology Cell and Tissue Therapies, Royal Perth Hospital, Perth, Western Australia, Australia.
| | - Peter Tan
- Department of Haematology Cell and Tissue Therapies, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Marian Sturm
- Department of Haematology Cell and Tissue Therapies, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Catherine Cole
- Department of Haematology Cell and Tissue Therapies, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
7
|
|