1
|
Tettey-Matey A, Donati V, Cimmino C, Di Pietro C, Buratto D, Panarelli M, Reale A, Calistri A, Fornaini MV, Zhou R, Yang G, Zonta F, Marazziti D, Mammano F. A fully human IgG1 antibody targeting connexin 32 extracellular domain blocks CMTX1 hemichannel dysfunction in an in vitro model. Cell Commun Signal 2024; 22:589. [PMID: 39639332 PMCID: PMC11619691 DOI: 10.1186/s12964-024-01969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Connexins (Cxs) are fundamental in cell-cell communication, functioning as gap junction channels (GJCs) that facilitate solute exchange between adjacent cells and as hemichannels (HCs) that mediate solute exchange between the cytoplasm and the extracellular environment. Mutations in the GJB1 gene, which encodes Cx32, lead to X-linked Charcot-Marie-Tooth type 1 (CMTX1), a rare hereditary demyelinating disorder of the peripheral nervous system (PNS) without an effective cure or treatment. In Schwann cells, Cx32 HCs are thought to play a role in myelination by enhancing intracellular and intercellular Ca2+ signaling, which is crucial for proper PNS myelination. Single-point mutations (p.S85C, p.D178Y, p.F235C) generate pathological Cx32 HCs characterized by increased permeability ("leaky") or excessive activity ("hyperactive").We investigated the effects of abEC1.1-hIgG1, a fully human immunoglobulin G1 (hIgG1) monoclonal antibody, on wild-type (WT) and mutant Cx32D178Y HCs. Using HeLa DH cells conditionally co-expressing Cx and a genetically encoded Ca2+ biosensor (GCaMP6s), we demonstrated that mutant HCs facilitated 58% greater Ca2+ uptake in response to elevated extracellular Ca2+ concentrations ([Ca2+]ex) compared to WT HCs. abEC1.1-hIgG1 dose-dependently inhibited Ca2+ uptake, achieving a 50% inhibitory concentration (EC50) of ~ 10 nM for WT HCs and ~ 80 nM for mutant HCs. Additionally, the antibody suppressed DAPI uptake and ATP release. An atomistic computational model revealed that serine 56 (S56) of the antibody interacts with aspartate 178 (D178) of WT Cx32 HCs, contributing to binding affinity. Despite the p.D178Y mutation weakening this interaction, the antibody maintained binding to the mutant HC epitope at sub-micromolar concentrations.In conclusion, our study shows that abEC1.1-hIgG1 effectively inhibits both WT and mutant Cx32 HCs, highlighting its potential as a therapeutic approach for CMTX1. These findings expand the antibody's applicability for treating diseases associated with Cx HCs and inform the rational design of next-generation antibodies with enhanced affinity and efficacy against mutant HCs.
Collapse
Affiliation(s)
- Abraham Tettey-Matey
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
- Present Address, CNR Institute of Biophysics, Genoa, 16149, Italy
| | - Viola Donati
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
- Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
| | - Chiara Cimmino
- CNR Institute of Endocrinology and Experimental Oncology "G. Salvatore", Naples, 80131, Italy
- Present Address: Interdisciplinary Research Centre On Biomaterials, University of Naples Federico II, Naples, 80125, Italy
| | - Chiara Di Pietro
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
| | - Damiano Buratto
- Institute of Quantitative Biology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | | | - Alberto Reale
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | | | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Francesco Zonta
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China.
| | - Daniela Marazziti
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy.
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy.
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, 35131, Italy.
| |
Collapse
|
2
|
Nardin C, Mammano F. Measurement of Ca 2+ Uptake Through Connexin Hemichannels. Methods Mol Biol 2024; 2801:97-109. [PMID: 38578416 DOI: 10.1007/978-1-0716-3842-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Increasing evidence points to deregulated flux of ionized calcium (Ca2+) mediated by hyperactive mutant connexin (Cx) hemichannels (HCs) as a common gain-of-function etiopathogenetic mechanism for several diseases, ranging from skin disorders to nervous system defects. Furthermore, the opening of nonmutated Cx HCs is associated with an impressive list of widespread diseases including, but not limited to, ischemia/stroke, Alzheimer's disease, and epilepsy. HC inhibitors are attracting a growing attention due to their therapeutic potential for numerous pathologies. This chapter describes a quantitative method to measure Ca2+ uptake though HCs expressed in cultured cells. The assay we developed can be used to probe HC activity as wells as to test HC inhibitors. Furthermore, with minor changes it can be easily adapted to high-throughput high-content platforms and/or primary cells and microtissues.
Collapse
Affiliation(s)
- Chiara Nardin
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
- , Genoa, Italy
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy.
- Department of Physics and Astronomy "G. Galilei", University of Padova, Padova, Italy.
| |
Collapse
|
3
|
A Quantitative Assay for Ca2+ Uptake through Normal and Pathological Hemichannels. Int J Mol Sci 2022; 23:ijms23137337. [PMID: 35806342 PMCID: PMC9266989 DOI: 10.3390/ijms23137337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/25/2022] Open
Abstract
Connexin (Cx) hemichannels (HCs) are large pore hexameric structures that allow the exchange of ions, metabolites and a variety of other molecules between the cell cytoplasm and extracellular milieu. HC inhibitors are attracting growing interest as drug candidates because deregulated fluxes through HCs have been implicated in a plethora of genetic conditions and other diseases. HC activity has been mainly investigated by electrophysiological methods and/or using HC-permeable dye uptake measurements. Here, we present an all-optical assay based on fluorometric measurements of ionized calcium (Ca2+) uptake with a Ca2+-selective genetically encoded indicator (GCaMP6s) that permits the optical tracking of cytosolic Ca2+ concentration ([Ca2+]cyt) changes with high sensitivity. We exemplify use of the assay in stable pools of HaCaT cells overexpressing human Cx26, Cx46, or the pathological mutant Cx26G45E, under control of a tetracycline (Tet) responsive element (TRE) promoter (Tet-on). We demonstrate the usefulness of the assay for the characterization of new monoclonal antibodies (mAbs) targeting the extracellular domain of the HCs. Although we developed the assay on a spinning disk confocal fluorescence microscope, the same methodology can be extended seamlessly to high-throughput high-content platforms to screen other kinds of inhibitors and/or to probe HCs expressed in primary cells and microtissues.
Collapse
|
4
|
Mazzarda F, D'Elia A, Massari R, De Ninno A, Bertani FR, Businaro L, Ziraldo G, Zorzi V, Nardin C, Peres C, Chiani F, Tettey-Matey A, Raspa M, Scavizzi F, Soluri A, Salvatore AM, Yang J, Mammano F. Organ-on-chip model shows that ATP release through connexin hemichannels drives spontaneous Ca 2+ signaling in non-sensory cells of the greater epithelial ridge in the developing cochlea. LAB ON A CHIP 2020; 20:3011-3023. [PMID: 32700707 DOI: 10.1039/d0lc00427h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Prior work supports the hypothesis that ATP release through connexin hemichannels drives spontaneous Ca2+ signaling in non-sensory cells of the greater epithelial ridge (GER) in the developing cochlea; however, direct proof is lacking. To address this issue, we plated cochlear organotypic cultures (COCs) and whole cell-based biosensors with nM ATP sensitivity (ATP-WCBs) at the bottom and top of an ad hoc designed transparent microfluidic chamber, respectively. By performing dual multiphoton Ca2+ imaging, we monitored the propagation of intercellular Ca2+ waves in the GER of COCs and ATP-dependent Ca2+ responses in overlying ATP-WCBs. Ca2+ signals in both COCs and ATP-WCBs were inhibited by supplementing the extracellular medium with ATP diphosphohydrolase (apyrase). Spontaneous Ca2+ signals were strongly depressed in the presence of Gjb6-/- COCs, in which connexin 30 (Cx30) is absent and connexin 26 (Cx26) is strongly downregulated. In contrast, spontaneous Ca2+ signals were not affected by replacement of Panx1-/- with Panx1+/+ COCs in the microfluidic chamber. Similar results were obtained by estimating ATP release from COCs using a classical luciferin-luciferase bioluminescence assay. Therefore, connexin hemichannels and not pannexin 1 channels mediate the release of ATP that is responsible for Ca2+ wave propagation in the developing mouse cochlea. The technological advances presented here have the potential to shed light on a plethora of unrelated open issues that involve paracrine signaling in physiology and pathology and cannot be addressed with standard methods.
Collapse
Affiliation(s)
- Flavia Mazzarda
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Science, Università degli Studi di Roma3, Rome, Italy
| | - Annunziata D'Elia
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Science, Università degli Studi di Roma3, Rome, Italy
| | - Roberto Massari
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Adele De Ninno
- CNR Institute for Photonics and Nanotechnology, Rome, Italy.
| | | | - Luca Businaro
- CNR Institute for Photonics and Nanotechnology, Rome, Italy.
| | - Gaia Ziraldo
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Francesco Chiani
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Alessandro Soluri
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Jun Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. and Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Physics and Astronomy "G. Galilei", University of Padova, Padua, Italy.
| |
Collapse
|
5
|
Photosensitizer Activation Drives Apoptosis by Interorganellar Ca 2+ Transfer and Superoxide Production in Bystander Cancer Cells. Cells 2019; 8:cells8101175. [PMID: 31569545 PMCID: PMC6829494 DOI: 10.3390/cells8101175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/14/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
In cells, photosensitizer (PS) activation by visible light irradiation triggers reactive oxygen species (ROS) formation, followed by a cascade of cellular responses involving calcium (Ca2+) and other second messengers, resulting in cell demise. Cytotoxic effects spread to nearby cells not exposed to light by poorly characterized so-called "bystander effects". To elucidate the mechanisms involved in bystander cell death, we used both genetically encoded biosensors and fluorescent dyes. In particular, we monitored the kinetics of interorganellar Ca2+ transfer and the production of mitochondrial superoxide anion (O2-∙) and hydrogen peroxide (H2O2) in irradiated and bystander B16-F10 mouse melanoma cancer cells. We determined that focal PS photoactivation in a single cell triggers Ca2+ release from the endoplasmic reticulum (ER) also in the surrounding nonexposed cells, paralleled by mitochondrial Ca2+ uptake. Efficient Ca2+ efflux from the ER was required to promote mitochondrial O2-∙ production in these bystander cells. Our results support a key role for ER-mitochondria communication in the induction of ROS-mediated apoptosis in both direct and indirect photodynamical cancer cell killing.
Collapse
|
6
|
Mammano F. Inner Ear Connexin Channels: Roles in Development and Maintenance of Cochlear Function. Cold Spring Harb Perspect Med 2019; 9:a033233. [PMID: 30181354 PMCID: PMC6601451 DOI: 10.1101/cshperspect.a033233] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Connexin 26 and connexin 30 are the prevailing isoforms in the epithelial and connective tissue gap junction systems of the developing and mature cochlea. The most frequently encountered variants of the genes that encode these connexins, which are transcriptionally coregulated, determine complete loss of protein function and are the predominant cause of prelingual hereditary deafness. Reducing connexin 26 expression by Cre/loxP recombination in the inner ear of adult mice results in a decreased endocochlear potential, increased hearing thresholds, and loss of >90% of outer hair cells, indicating that this connexin is essential for maintenance of cochlear function. In the developing cochlea, connexins are necessary for intercellular calcium signaling activity. Ribbon synapses and basolateral membrane currents fail to mature in inner hair cells of mice that are born with reduced connexin expression, even though hair cells do not express any connexin. In contrast, pannexin 1, an alternative mediator of intercellular signaling, is dispensable for hearing acquisition and auditory function.
Collapse
Affiliation(s)
- Fabio Mammano
- University of Padova, Department of Physics and Astronomy "G. Galilei," Padova 35129, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Ceriani F, Hendry A, Jeng JY, Johnson SL, Stephani F, Olt J, Holley MC, Mammano F, Engel J, Kros CJ, Simmons DD, Marcotti W. Coordinated calcium signalling in cochlear sensory and non-sensory cells refines afferent innervation of outer hair cells. EMBO J 2019; 38:embj.201899839. [PMID: 30804003 PMCID: PMC6484507 DOI: 10.15252/embj.201899839] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/11/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
Outer hair cells (OHCs) are highly specialized sensory cells conferring the fine‐tuning and high sensitivity of the mammalian cochlea to acoustic stimuli. Here, by genetically manipulating spontaneous Ca2+ signalling in mice in vivo, through a period of early postnatal development, we find that the refinement of OHC afferent innervation is regulated by complementary spontaneous Ca2+ signals originating in OHCs and non‐sensory cells. OHCs fire spontaneous Ca2+ action potentials during a narrow period of neonatal development. Simultaneously, waves of Ca2+ activity in the non‐sensory cells of the greater epithelial ridge cause, via ATP‐induced activation of P2X3 receptors, the increase and synchronization of the Ca2+ activity in nearby OHCs. This synchronization is required for the refinement of their immature afferent innervation. In the absence of connexin channels, Ca2+ waves are impaired, leading to a reduction in the number of ribbon synapses and afferent fibres on OHCs. We propose that the correct maturation of the afferent connectivity of OHCs requires experience‐independent Ca2+ signals from sensory and non‐sensory cells.
Collapse
Affiliation(s)
- Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Aenea Hendry
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Friederike Stephani
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Matthew C Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Fabio Mammano
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padova, Italy.,Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, Monterotondo, Italy
| | - Jutta Engel
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Corné J Kros
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Eckrich T, Blum K, Milenkovic I, Engel J. Fast Ca 2+ Transients of Inner Hair Cells Arise Coupled and Uncoupled to Ca 2+ Waves of Inner Supporting Cells in the Developing Mouse Cochlea. Front Mol Neurosci 2018; 11:264. [PMID: 30104958 PMCID: PMC6077211 DOI: 10.3389/fnmol.2018.00264] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/12/2018] [Indexed: 01/29/2023] Open
Abstract
Before the onset of hearing, which occurs around postnatal day 12 (P12) in mice, inner hair cells (IHCs) of the immature cochlea generate sound-independent Ca2+ action potentials (APs), which stimulate the auditory pathway and guide maturation of neuronal circuits. During these early postnatal days, intercellular propagating Ca2+ waves elicited by ATP-induced ATP release are found in inner supporting cells (ISCs). It is debated whether IHCs are able to fire Ca2+ APs independently or require a trigger by an ISC Ca2+ wave. To identify the Ca2+ transients of IHCs underlying Ca2+ APs and to analyze their dependence on ISC Ca2+ waves, we performed fast Ca2+ imaging of Fluo-8 AM-loaded organs of Corti at P4/P5. Fast Ca2+ transients (fCaTs) generated by IHCs were simultaneously imaged with Ca2+ waves in ISCs. ISC Ca2+ waves frequently evoked bursts consisting of >5 fCaTs in multiple adjacent IHCs. Although Ca2+ elevations of small amplitude appeared to be triggered by ISC Ca2+ waves in IHCs of Cav1.3 knockout mice we never observed fCaTs, indicating their requirement for Ca2+ influx through Cav1.3 channels. The Ca2+ wave-triggered Ca2+ upstroke in wildtype IHCs occurred 0.52 ± 0.27 s later than the rise of the Ca2+ signal in the adjacent ISCs. In comparison, superfusion of 1 μM ATP elicited bursts of fCaTs in IHCs starting 0.99 ± 0.34 s prior to Ca2+ elevations in adjacent ISCs. PPADS irreversibly abolished Ca2+ waves in ISCs and reversibly reduced fCaTs in IHCs indicating differential involvement of P2 receptors. IHC and ISC Ca2+ signals were however unaltered in P2X2R/P2X3R double knockout or in P2X7R knockout mice. Together, our data revealed a fairly similar occurrence of fCaTs within a burst (56.5%) compared with 43.5% as isolated single fCaTs or in groups of 2–5 fCaTs (minibursts). We provide evidence that IHCs autonomously generate single fCaTs and minibursts whereas bursts synchronized between neighboring IHCs were mostly triggered by ISC Ca2+ waves. Neonatal IHCs thus spontaneously generate electrical and Ca2+ activity, which is enhanced and largely synchronized by activity of ISCs of Kölliker’s organ indicating two sources of spontaneous activity in the developing auditory system.
Collapse
Affiliation(s)
- Tobias Eckrich
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, School of Medicine, Homburg, Germany
| | - Kerstin Blum
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, School of Medicine, Homburg, Germany
| | - Ivan Milenkovic
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, School of Medicine, Homburg, Germany
| |
Collapse
|
9
|
Filipis L, Ait Ouares K, Moreau P, Tanese D, Zampini V, Latini A, Bleau C, Bleau C, Graham J, Canepari M. A novel multisite confocal system for rapid Ca 2+ imaging from submicron structures in brain slices. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 29165917 DOI: 10.1002/jbio.201700197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/13/2017] [Indexed: 05/14/2023]
Abstract
In brain slices, resolving fast Ca2+ fluorescence signals from submicron structures is typically achieved using 2-photon or confocal scanning microscopy, an approach that limits the number of scanned points. The novel multiplexing confocal system presented here overcomes this limitation. This system is based on a fast spinning disk, a multimode diode laser and a novel high-resolution CMOS camera. The spinning disk, running at 20 000 rpm, has custom-designed spiral pattern that maximises light collection, while rejecting out-of-focus fluorescence to resolve signals from small neuronal compartments. Using a 60× objective, the camera permits acquisitions of tens of thousands of pixels at resolutions of ~250 nm per pixel in the kHz range with 14 bits of digital depth. The system can resolve physiological Ca2+ transients from submicron structures at 20 to 40 μm below the slice surface, using the low-affinity Ca2+ indicator Oregon Green BAPTA-5N. In particular, signals at 0.25 to 1.25 kHz were resolved in single trials, or through averages of a few recordings, from dendritic spines and small parent dendrites in cerebellar Purkinje neurons. Thanks to an unprecedented combination of temporal and spatial resolution with relatively simple implementation, it is expected that this system will be widely adopted for multisite monitoring of Ca2+ signals.
Collapse
Affiliation(s)
- Luiza Filipis
- Laboratory for Interdisciplinary Physics, UMR 5588 CNRS and Université Grenoble Alpes, Saint Martin d'Hères Cedex, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, France
| | - Karima Ait Ouares
- Laboratory for Interdisciplinary Physics, UMR 5588 CNRS and Université Grenoble Alpes, Saint Martin d'Hères Cedex, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, France
| | - Philippe Moreau
- Laboratory for Interdisciplinary Physics, UMR 5588 CNRS and Université Grenoble Alpes, Saint Martin d'Hères Cedex, France
| | - Dimitrii Tanese
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR8250 CNRS and Paris Descartes University, Paris, France
| | - Valeria Zampini
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR8250 CNRS and Paris Descartes University, Paris, France
| | | | | | | | | | - Marco Canepari
- Laboratory for Interdisciplinary Physics, UMR 5588 CNRS and Université Grenoble Alpes, Saint Martin d'Hères Cedex, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, France
- Institut National de la Santé et Recherche Médicale (INSERM), France
| |
Collapse
|
10
|
Carrer A, Leparulo A, Crispino G, Ciubotaru CD, Marin O, Zonta F, Bortolozzi M. Cx32 hemichannel opening by cytosolic Ca2+ is inhibited by the R220X mutation that causes Charcot-Marie-Tooth disease. Hum Mol Genet 2018; 27:80-94. [PMID: 29077882 DOI: 10.1093/hmg/ddx386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/17/2017] [Indexed: 11/15/2022] Open
Abstract
Mutations of the GJB1 gene encoding connexin 32 (Cx32) cause the X-linked form of Charcot-Marie-Tooth disease (CMTX1), a demyelinating peripheral neuropathy for which there is no cure. A growing body of evidence indicates that ATP release through Cx32 hemichannels in Schwann cells could be critical for nerve myelination, but it is unknown if CMTX1 mutations alter the cytosolic Ca2+-dependent gating mechanism that controls Cx32 hemichannel opening and ATP release. The current study uncovered that loss of the C-terminus in Cx32 (R220X mutation), which causes a severe CMTX1 phenotype, inhibits hemichannel opening during a canonical IP3-mediated increase in cytosolic Ca2+ in HeLa cells. Interestingly, the gating function of R220X hemichannels was completely restored by both the intracellular and extracellular application of a peptide that mimics the Cx32 cytoplasmic loop. All-atom molecular dynamics simulations suggest that loss of the C-terminus in the mutant hemichannel triggers abnormal fluctuations of the cytoplasmic loop which are prevented by binding to the mimetic peptide. Experiments that stimulated R220X hemichannel opening by cell depolarization displayed reduced voltage sensitivity with respect to wild-type hemichannels which was explained by loss of subconductance states at the single channel level. Finally, experiments of intercellular diffusion mediated by wild-type or R220X gap junction channels revealed similar unitary permeabilities to ions, signalling molecules (cAMP) or larger solutes (Lucifer yellow). Taken together, our findings support the hypothesis that paracrine signalling alteration due to Cx32 hemichannel dysfunction underlies CMTX1 pathogenesis and suggest a candidate molecule for novel studies investigating a therapeutic approach.
Collapse
Affiliation(s)
- Andrea Carrer
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
| | - Alessandro Leparulo
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
| | - Giulia Crispino
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
| | | | - Oriano Marin
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
| | - Mario Bortolozzi
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
- Italian National Research Council (CNR), Institute of Protein Biochemistry, Naples 80131, Italy
| |
Collapse
|
11
|
Connexin-Mediated Signaling in Nonsensory Cells Is Crucial for the Development of Sensory Inner Hair Cells in the Mouse Cochlea. J Neurosci 2017; 37:258-268. [PMID: 28077706 PMCID: PMC5242392 DOI: 10.1523/jneurosci.2251-16.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/10/2016] [Accepted: 11/07/2016] [Indexed: 12/03/2022] Open
Abstract
Mutations in the genes encoding for gap junction proteins connexin 26 (Cx26) and connexin 30 (Cx30) have been linked to syndromic and nonsyndromic hearing loss in mice and humans. The release of ATP from connexin hemichannels in cochlear nonsensory cells has been proposed to be the main trigger for action potential activity in immature sensory inner hair cells (IHCs), which is crucial for the refinement of the developing auditory circuitry. Using connexin knock-out mice, we show that IHCs fire spontaneous action potentials even in the absence of ATP-dependent intercellular Ca2+ signaling in the nonsensory cells. However, this signaling from nonsensory cells was able to increase the intrinsic IHC firing frequency. We also found that connexin expression is key to IHC functional maturation. In Cx26 conditional knock-out mice (Cx26Sox10-Cre), the maturation of IHCs, which normally occurs at approximately postnatal day 12, was partially prevented. Although Cx30 has been shown not to be required for hearing in young adult mice, IHCs from Cx30 knock-out mice exhibited a comprehensive brake in their development, such that their basolateral membrane currents and synaptic machinery retain a prehearing phenotype. We propose that IHC functional differentiation into mature sensory receptors is initiated in the prehearing cochlea provided that the expression of either connexin reaches a threshold level. As such, connexins regulate one of the most crucial functional refinements in the mammalian cochlea, the disruption of which contributes to the deafness phenotype observed in mice and DFNB1 patients. SIGNIFICANCE STATEMENT The correct development and function of the mammalian cochlea relies not only on the sensory hair cells, but also on the surrounding nonsensory cells. Although the nonsensory cells have been largely implicated in the general homeostasis in the mature cochlea, their involvement in the initial functional differentiation of the sensory inner hair cells is less clear. Using mutant mouse models for the most common form of congenital deafness in humans, which are knock-outs for the gap-junction channels connexin 26 and connexin 30 genes, we show that defects in nonsensory cells prevented the functional maturation of inner hair cells. In connexin knock-outs, inner hair cells remained stuck at a prehearing stage of development and, as such, are unable to process sound information.
Collapse
|