1
|
Baiersdörfer M, Boros G, Muramatsu H, Mahiny A, Vlatkovic I, Sahin U, Karikó K. A Facile Method for the Removal of dsRNA Contaminant from In Vitro-Transcribed mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 15:26-35. [PMID: 30933724 PMCID: PMC6444222 DOI: 10.1016/j.omtn.2019.02.018] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 01/12/2023]
Abstract
The increasing importance of in vitro-transcribed (IVT) mRNA for synthesizing the encoded therapeutic protein in vivo demands the manufacturing of pure mRNA products. The major contaminant in the IVT mRNA is double-stranded RNA (dsRNA), a transcriptional by-product that can be removed only by burdensome procedure requiring special instrumentation and generating hazardous waste. Here we present an alternative simple, fast, and cost-effective method involving only standard laboratory techniques. The purification of IVT mRNA is based on the selective binding of dsRNA to cellulose in an ethanol-containing buffer. We demonstrate that at least 90% of the dsRNA contaminants can be removed with a good, >65% recovery rate, regardless of the length, coding sequence, and nucleoside composition of the IVT mRNA. The procedure is scalable; purification of microgram or milligram amounts of IVT mRNA is achievable. Evaluating the impact of the mRNA purification in vivo in mice, increased translation could be measured for the administered transcripts, including the 1-methylpseudouridine-containing IVT mRNA, which no longer induced interferon (IFN)-α. The cellulose-based removal of dsRNA contaminants is an effective, reliable, and safe method to obtain highly pure IVT mRNA suitable for in vivo applications.
Collapse
Affiliation(s)
| | - Gábor Boros
- BioNTech RNA Pharmaceuticals, 55131 Mainz, Germany
| | | | - Azita Mahiny
- BioNTech RNA Pharmaceuticals, 55131 Mainz, Germany
| | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals, 55131 Mainz, Germany
| | | |
Collapse
|
2
|
Michel T, Luft D, Abraham MK, Reinhardt S, Salinas Medina ML, Kurz J, Schaller M, Avci-Adali M, Schlensak C, Peter K, Wendel HP, Wang X, Krajewski S. Cationic Nanoliposomes Meet mRNA: Efficient Delivery of Modified mRNA Using Hemocompatible and Stable Vectors for Therapeutic Applications. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:459-468. [PMID: 28918045 PMCID: PMC5545769 DOI: 10.1016/j.omtn.2017.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
Synthetically modified mRNA is a unique bioactive agent, ideal for use in therapeutic applications, such as cancer vaccination or treatment of single-gene disorders. In order to facilitate mRNA transfections for future therapeutic applications, there is a need for the delivery system to achieve optimal transfection efficacy, perform with durable stability, and provide drug safety. The objective of our study was to comprehensively analyze the use of 3β-[N-(N',N'-dimethylaminoethane) carbamoyl](DC-Cholesterol)/dioleoylphosphatidylethanolamine (DOPE) liposomes as a potential transfection agent for modified mRNAs. Our cationic liposomes facilitated a high degree of mRNA encapsulation and successful cell transfection efficiencies. More importantly, no negative effects on cell viability or immune reactions were detected posttransfection. Notably, the liposomes had a long-acting transfection effect on cells, resulting in a prolonged protein production of alpha-1-antitrypsin (AAT). In addition, the stability of these mRNA-loaded liposomes allowed storage for 80 days, without the loss of transfection efficacy. Finally, comprehensive analysis showed that these liposomes are fully hemocompatible with fresh human whole blood. In summary, we present an extensive analysis on the use of DC-cholesterol/DOPE liposomes as mRNA delivery vehicles. This approach provides the basis of a safe and efficient therapeutic strategy in the development of successful mRNA-based drugs.
Collapse
Affiliation(s)
- Tatjana Michel
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Daniel Luft
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Meike-Kristin Abraham
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany; Atherothrombosis and Vascular Biology, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Sabrina Reinhardt
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Martha L Salinas Medina
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Julia Kurz
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Medicine, Monash University, Melbourne, VIC 3500, Australia
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Medicine, Monash University, Melbourne, VIC 3500, Australia
| | - Stefanie Krajewski
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany.
| |
Collapse
|