1
|
Koukorava C, Ward K, Ahmed K, Almaghrabi S, Dauleh S, Pereira SM, Taylor A, Haddrick M, Cross MJ, Wilm B. Mesothelial Cells Exhibit Characteristics of Perivascular Cells in an In Vitro Angiogenesis Assay. Cells 2023; 12:2436. [PMID: 37887280 PMCID: PMC10605208 DOI: 10.3390/cells12202436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Mesothelial cells have been shown to have remarkable plasticity towards mesenchymal cell types during development and in disease situations. Here, we have characterized the potential of mesothelial cells to undergo changes toward perivascular cells using an in vitro angiogenesis assay. We demonstrate that GFP-labeled mesothelial cells (GFP-MCs) aligned closely and specifically with endothelial networks formed when human dermal microvascular endothelial cells (HDMECs) were cultured in the presence of VEGF-A165 on normal human dermal fibroblasts (NHDFs) for a 7-day period. The co-culture with GFP-MCs had a positive effect on branch point formation indicating that the cells supported endothelial tube formation. We interrogated the molecular response of the GFP-MCs to the angiogenic co-culture by qRT-PCR and found that the pericyte marker Ng2 was upregulated when the cells were co-cultured with HDMECs on NHDFs, indicating a change towards a perivascular phenotype. When GFP-MCs were cultured on the NHDF feeder layer, they upregulated the epithelial-mesenchymal transition marker Zeb1 and lost their circularity while increasing their size, indicating a change to a more migratory cell type. We analyzed the pericyte-like behavior of the GFP-MCs in a 3D cardiac microtissue (spheroid) with cardiomyocytes, cardiac fibroblasts and cardiac endothelial cells where the mesothelial cells showed alignment with the endothelial cells. These results indicate that mesothelial cells have the potential to adopt a perivascular phenotype and associate with endothelial cells to potentially support angiogenesis.
Collapse
Affiliation(s)
- Chrysa Koukorava
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Kelly Ward
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Katie Ahmed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Shrouq Almaghrabi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Sumaya Dauleh
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Sofia M. Pereira
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK
| | - Michael J. Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
2
|
Cathery W, Faulkner A, Jover E, Rodriguez-Arabaolaza I, Thomas AC, Avolio E, Caputo M, Madeddu P. Umbilical Cord Pericytes Provide a Viable Alternative to Mesenchymal Stem Cells for Neonatal Vascular Engineering. Front Cardiovasc Med 2021; 7:609980. [PMID: 33553259 PMCID: PMC7859275 DOI: 10.3389/fcvm.2020.609980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Reconstructive surgery of congenital heart disease (CHD) remains inadequate due to the inability of prosthetic grafts to match the somatic growth of pediatric patients. Functionalization of grafts with mesenchymal stem cells (MSCs) may provide a solution. However, MSCs represent a heterogeneous population characterized by wide diversity across different tissue sources. Here we investigated the suitability of umbilical cord pericytes (UCPs) in neonatal vascular engineering. Explant outgrowth followed by immunomagnetic sorting was used to isolate neural/glial antigen 2 (NG2)+/CD31- UCPs. Expanded NG2 UCPs showed consistent antigenic phenotype, including expression of mesenchymal and stemness markers, and high proliferation rate. They could be induced to a vascular smooth muscle cell-like phenotype after exposure to differentiation medium, as evidenced by the expression of transgelin and smooth muscle myosin heavy chain. Analysis of cell monolayers and conditioned medium revealed production of extracellular matrix proteins and the secretion of major angiocrine factors, which conferred UCPs with ability to promote endothelial cell migration and tube formation. Decellularized swine-derived grafts were functionalized using UCPs and cultured under static and dynamic flow conditions. UCPs were observed to integrate into the outer layer of the graft and modify the extracellular environment, resulting in improved elasticity and rupture strain in comparison with acellular grafts. These findings demonstrate that a homogeneous pericyte-like population can be efficiently isolated and expanded from human cords and integrated in acellular grafts currently used for repair of CHD. Functional assays suggest that NG2 UCPs may represent a viable option for neonatal tissue engineering applications.
Collapse
Affiliation(s)
- William Cathery
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Ashton Faulkner
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Eva Jover
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- Cardiovascular Translational Research, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra-IdiSNA, Pamplona, Spain
| | - Iker Rodriguez-Arabaolaza
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Anita C. Thomas
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Massimo Caputo
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
3
|
Wei H, Sundararaman A, Truelsen SLB, Gurevich D, Thastrup J, Mellor H. In Vitro Coculture Assays of Angiogenesis. Methods Mol Biol 2021; 2206:39-46. [PMID: 32754809 DOI: 10.1007/978-1-0716-0916-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During angiogenesis, endothelial cells must undergo a coordinated set of morphological changes in order to form a new vessel. There is a need for endothelial cells to communicate with each other in order to take up different identities in the sprout and to migrate collectively as a connected chord. Endothelial cells must also interact with a wide range of other cells that contribute to vessel formation. In ischemic disease, hypoxic cells in tissue will generate proangiogenic signals that promote and guide angiogenesis. In solid tumors, this function is co-opted by tumor cells, which make a complex range of interactions with endothelial cells, even integrating into the walls of vessels. In vessel repair, cells from the immune system contribute to the promotion and remodeling of new vessels. The coculture angiogenesis assay is a long-term in vitro protocol that uses fibroblasts to secrete and condition an artificial stromal matrix for tubules to grow through. We show here how the assay can be easily adapted to include additional cell types, facilitating the study of cellular interactions during neovascularization.
Collapse
Affiliation(s)
- Haoche Wei
- School of Biochemistry, University of Bristol, Bristol, UK
| | | | | | - David Gurevich
- School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Harry Mellor
- School of Biochemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
4
|
Faulkner A, Tamiato A, Cathery W, Rampin A, Caravaggi CM, Jover E, Allen S, Mellor H, Hauton D, Heather LC, Spinetti G, Madeddu P. Dimethyl-2-oxoglutarate improves redox balance and mitochondrial function in muscle pericytes of individuals with diabetes mellitus. Diabetologia 2020; 63:2205-2217. [PMID: 32728894 PMCID: PMC7476972 DOI: 10.1007/s00125-020-05230-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/22/2020] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Treatment of vascular complications of diabetes remains inadequate. We reported that muscle pericytes (MPs) from limb muscles of vascular patients with diabetes mellitus display elevated levels of oxidative stress causing a dysfunctional phenotype. Here, we investigated whether treatment with dimethyl-2-oxoglutarate (DM-2OG), a tricarboxylic acid cycle metabolite with antioxidant properties, can restore a healthy metabolic and functional phenotype. METHODS MPs were isolated from limb muscles of diabetes patients with vascular disease (D-MPs) and from non-diabetic control participants (ND-MPs). Metabolic status was assessed in untreated and DM-2OG-treated (1 mmol/l) cells using an extracellular flux analyser and anion-exchange chromatography-mass spectrometry (IC-MS/MS). Redox status was measured using commercial kits and IC-MS/MS, with antioxidant and metabolic enzyme expression assessed by quantitative RT-PCR and western blotting. Myogenic differentiation and proliferation and pericyte-endothelial interaction were assessed as functional readouts. RESULTS D-MPs showed mitochondrial dysfunction, suppressed glycolytic activity and reduced reactive oxygen species-buffering capacity, but no suppression of antioxidant systems when compared with ND-MP controls. DM-2OG supplementation improved redox balance and mitochondrial function, without affecting glycolysis or antioxidant systems. Nonetheless, this was not enough for treated D-MPs to regain the level of proliferation and myogenic differentiation of ND-MPs. Interestingly, DM-2OG exerted a positive effect on pericyte-endothelial cell interaction in the co-culture angiogenesis assay, independent of the diabetic status. CONCLUSIONS/INTERPRETATION These novel findings support the concept of using DM-2OG supplementation to improve pericyte redox balance and mitochondrial function, while concurrently allowing for enhanced pericyte-endothelial crosstalk. Such effects may help to prevent or slow down vasculopathy in skeletal muscles of people with diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Ashton Faulkner
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK.
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | - Anita Tamiato
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - William Cathery
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | | | | | - Eva Jover
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Steve Allen
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Harry Mellor
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - David Hauton
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Lisa C Heather
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | | | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
5
|
de Vega S, Kondo A, Suzuki M, Arai H, Jiapaer S, Sabit H, Nakada M, Ikeuchi T, Ishijima M, Arikawa-Hirasawa E, Yamada Y, Okada Y. Fibulin-7 is overexpressed in glioblastomas and modulates glioblastoma neovascularization through interaction with angiopoietin-1. Int J Cancer 2019; 145:2157-2169. [PMID: 30924128 DOI: 10.1002/ijc.32306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/20/2019] [Indexed: 01/01/2023]
Abstract
Glioblastoma (GBM) is pathologically characterized by highly malignant neoplastic cells, focal necrosis and aberrant blood vessels composed of disorganized endothelial cells and pericytes. The recent cancer microarray database revealed upregulation of fibulin-7 (Fbln7), a member of the fibulin family, but provided no information on the tissue localization or biological function. In the present study, we demonstrated that Fbln7 is markedly overexpressed by the GBM tissue among astrocytic tumors, and immunolocalized mainly to endothelial cells and pericytes of the glomeruloid and hypertrophied microvessels. The production of Fbln7 by endothelial cells and pericytes was confirmed in cultured human umbilical vein endothelial cells (HUVEC) and human brain vascular pericytes (HBVP) and vascular endothelial growth factor (VEGF) stimulated the Fbln7 expression in HUVEC. Fbln7 bound to angiopoietin-1, but not angiopoietin-2 or Tie2 receptor, through interaction between the N-terminal portions of Fbln7 and angiopoietin-1, and it blocked phosphorylation of Tie2 receptor in HUVEC. In a coculture assay using HUVEC and HBVP, multilayered and irregular-shaped tube-like structures of HUVEC were induced by treatment with a high concentration of VEGF. This was accompanied by Fbln7 overproduction by HUVEC and angiopoietin-1 expression by HBVP. The production of aberrant VEGF-induced tube-like structures was attenuated by treatment with antibody or synthetic peptides specific to the Fbln7 N-terminal domain or knockdown of Fbln7. These data demonstrate that Fbln7 is overexpressed by endothelial cells and pericytes of the abnormal microvessels in GBM, and suggest that Fbln7 may contribute to the aberrant vessel formation by modulation of the angiopoietin-1/angiopoietin-2-Tie2 axis.
Collapse
Affiliation(s)
- Susana de Vega
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mario Suzuki
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shabierjiang Jiapaer
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tomoko Ikeuchi
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, USA
| | - Muneaki Ishijima
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for the Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshihiko Yamada
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, USA
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Flora T, de Torre IG, Alonso M, Rodríguez-Cabello JC. Tethering QK peptide to enhance angiogenesis in elastin-like recombinamer (ELR) hydrogels. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:30. [PMID: 30762134 DOI: 10.1007/s10856-019-6232-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
The development of new capillary networks in engineered constructs is essential for their survival and their integration with the host tissue. It has recently been demonstrated that ELR-based hydrogels encoding different bioactivities are able to modulate their interaction with the host after injection or implantation, as indicated by an increase in cell adhesion and the ability to trigger vascularization processes. Accordingly, the aim of this study was to increase their angiogenic ability both in vitro and in vivo using a small VEGF mimetic peptide named QK, which was tethered chemically to ELR-based hydrogels containing cell-adhesion sequences in their backbone, such as REDV and RGD, as well as a proteolytic site (VGVAPG). In vitro studies were performed using a co-culture of endothelial and fibroblast cells encapsulated into the ELR-based hydrogels in order to determine cell proliferation after 21 days of culture, as well as the number of cell-cell interactions. It was found that although the presence of this peptide does not influence the morphological and rheological properties of these hydrogels, it has an effect on cell behaviour, inducing an increase in cell proliferation and the formation of endothelial cell clusters. In vivo studies demonstrate that the QK peptide enhances the formation of prominent functional capillaries at three weeks post-injection, as confirmed by H&E staining and CD31 immunohistochemistry. The newly formed functional microvasculature ensures perfusion and connection with surrounding tissues. These results show that ELR-QK hydrogels increase capillary network formation and are therefore attractive candidates for application in tissue regeneration, for example for the treatment of cardiovascular diseases such as myocardial infarction or ischemia.
Collapse
Affiliation(s)
- Tatjana Flora
- BIOFORGE, CIBER-BBN, Edificio Lucia, Universidad de Valladolid, Paseo Belén 19, 47011, Valladolid, Spain
| | - I González de Torre
- BIOFORGE, CIBER-BBN, Edificio Lucia, Universidad de Valladolid, Paseo Belén 19, 47011, Valladolid, Spain
- Technical proteins nanobiotechnology (TPNBT S.L.), Paseo Belén 9A, 47011, Valladolid, Spain
| | - M Alonso
- BIOFORGE, CIBER-BBN, Edificio Lucia, Universidad de Valladolid, Paseo Belén 19, 47011, Valladolid, Spain
| | - J Carlos Rodríguez-Cabello
- BIOFORGE, CIBER-BBN, Edificio Lucia, Universidad de Valladolid, Paseo Belén 19, 47011, Valladolid, Spain.
| |
Collapse
|
7
|
Gurevich DB, Severn CE, Twomey C, Greenhough A, Cash J, Toye AM, Mellor H, Martin P. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J 2018; 37:embj.201797786. [PMID: 29866703 PMCID: PMC6028026 DOI: 10.15252/embj.201797786] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Wound angiogenesis is an integral part of tissue repair and is impaired in many pathologies of healing. Here, we investigate the cellular interactions between innate immune cells and endothelial cells at wounds that drive neoangiogenic sprouting in real time and in vivo. Our studies in mouse and zebrafish wounds indicate that macrophages are drawn to wound blood vessels soon after injury and are intimately associated throughout the repair process and that macrophage ablation results in impaired neoangiogenesis. Macrophages also positively influence wound angiogenesis by driving resolution of anti‐angiogenic wound neutrophils. Experimental manipulation of the wound environment to specifically alter macrophage activation state dramatically influences subsequent blood vessel sprouting, with premature dampening of tumour necrosis factor‐α expression leading to impaired neoangiogenesis. Complementary human tissue culture studies indicate that inflammatory macrophages associate with endothelial cells and are sufficient to drive vessel sprouting via vascular endothelial growth factor signalling. Subsequently, macrophages also play a role in blood vessel regression during the resolution phase of wound repair, and their absence, or shifted activation state, impairs appropriate vessel clearance.
Collapse
Affiliation(s)
| | - Charlotte E Severn
- School of Biochemistry, University of Bristol, Bristol, UK.,National Institute for Health Research (NIHR) Blood and Transplant Unit in Red Blood Cell Products, University of Bristol, Bristol, UK
| | | | | | - Jenna Cash
- School of Biochemistry, University of Bristol, Bristol, UK.,MRC Centre for Inflammation Research, Edinburgh Medical School, The Queen's Medical Research Institute, Edinburgh, UK
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Bristol, UK.,National Institute for Health Research (NIHR) Blood and Transplant Unit in Red Blood Cell Products, University of Bristol, Bristol, UK.,Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol, UK
| | - Harry Mellor
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK .,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.,School of Medicine, University of Cardiff, Cardiff, UK
| |
Collapse
|
8
|
Kaessmeyer S, Sehl J, Khiao In M, Hiebl B, Merle R, Jung F, Franke RP, Plendl J. Organotypic soft-tissue co-cultures: Morphological changes in microvascular endothelial tubes after incubation with iodinated contrast media. Clin Hemorheol Microcirc 2016; 64:391-402. [PMID: 27935551 DOI: 10.3233/ch-168119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Clinical complications like thrombosis or anaphylaxis have been described to go along with the intra-venous or intra-arterial injection of iodinated contrast media (CM). It has been suggested that the administration of CM affects rheological parameters and thereby causes reduced blood velocity in microvessels. In vitro studies revealed significant buckling of endothelial cells after exposure to CM reducing the lumen of vessels. The aim of this study was to test the influence of CM on three-dimensional microvascular tubules with open lumina within an organotypic soft-tissue co-culture assay in vitro. This model, which is based on the co-culture of endothelial cells and fibroblasts, allows the analysis and quantitation of different parameters of microvascular endothelial capillary structures. MATERIAL AND METHODS Human dermal fibroblasts and human dermal microvascular endothelial cells were co-cultured for 10 days. Fibroblasts were adapted to the endothelial cell medium before co-culture and allowed to proliferate as well as produce extracellular matrix. The co-cultures were exposed to three different CM, i.e., Iomeprol (Imeron 400MCT), Iodixanol (Visipaque 320) or Iohexol (Accupaque 350) for 1.5 minutes or 5.0 minutes, respectively. For this, a mixture of CM and cell culture medium in a ratio of 30% CM by volume was prepared. After fixation in methanol/acetone, the endothelial cells were immunolabeled with the endothelial marker anti-CD31 and the tubular structures were assessed morphometrically. RESULTS In the organotypic soft-tissue co-cultures with fibroblasts, the endothelial cells developed three-dimensional capillary-like structures which expanded via sprouting branches. After incubation with the different CM, the numbers of endothelial tubes (p = 0.001) and their lengths (p = 0.003) were significantly lower after the 5 minutes incubation time, when compared to the 1.5 minutes incubation time. The tubular diameters were significantly reduced after 5 minutes (p < 0.001), when compared to the 1.5 minutes incubation duration. Interestingly, Iomeprol and Iodixanol induced an elongation of the tubular branches during incubation duration of 1.5 minutes (p = 0.015). However, after 5 minutes incubation, the tubular branches were drastically shorter in the presence of Iomeprol and Iodixanol than the tubular branches of the control (p = 0.007). SUMMARY AND CONCLUSION All CM exerted a negative effect on the parameters of in vitro blood vessel development.
Collapse
Affiliation(s)
- S Kaessmeyer
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - J Sehl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - M Khiao In
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - B Hiebl
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Hannover, Germany
| | - R Merle
- Department of Veterinary Medicine, Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - F Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - R P Franke
- Central Institute for Biomedical Technology, Biomaterials Division, University of Ulm, Ulm, Germany
| | - J Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|