1
|
Tang JJJ, Sung AP, Guglielmo MJ, Navarrete-Galvan L, Redelman D, Smith-Gagen J, Hudig D. Natural Killer (NK) Cell Expression of CD2 as a Predictor of Serial Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC). Antibodies (Basel) 2020; 9:antib9040054. [PMID: 33081115 PMCID: PMC7709134 DOI: 10.3390/antib9040054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
NK cell ADCC supports monoclonal antibody anti-tumor therapies. We investigated serial ADCC and whether it could be predicted by NK phenotypes, including expression of CD16A, CD2 and perforin. CD16A, the NK receptor for antibodies, has AA158 valine or phenylalanine variants with different affinities for IgG. CD2, a costimulatory protein, associates with CD16A and can augment CD16A-signaling. Pore-forming perforin is essential for rapid NK-mediated killing. NK cells were monitored for their ADCC serial killing frequency (KF). KF is the average number of target cells killed per cell by a cytotoxic cell population. KF comparisons were made at 1:4 CD16pos NK effector:target ratios. ADCC was toward Daudi cells labeled with 51Cr and obinutuzumab anti-CD20 antibody. CD16A genotypes were determined by DNA sequencing. CD2, CD16A, and perforin expression was monitored by flow cytometry. Serial killing KFs varied two-fold among 24 donors and were independent of CD16A genotypes and perforin levels. However, high percentages of CD2pos of the CD16Apos NK cells and high levels of CD16A were associated with high KFs. ROC analysis indicated that the %CD2pos of CD16Apos NK cells can predict KFs. In conclusion, the extent of serial ADCC varies significantly among donors and appears predictable by the CD2posCD16Apos NK phenotype.
Collapse
Affiliation(s)
- Jennifer J.-J. Tang
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA; (J.J.-J.T.); (A.P.S.); (M.J.G.); (L.N.-G.)
| | - Alexander P. Sung
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA; (J.J.-J.T.); (A.P.S.); (M.J.G.); (L.N.-G.)
| | - Michael J. Guglielmo
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA; (J.J.-J.T.); (A.P.S.); (M.J.G.); (L.N.-G.)
| | - Lydia Navarrete-Galvan
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA; (J.J.-J.T.); (A.P.S.); (M.J.G.); (L.N.-G.)
| | - Doug Redelman
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA;
| | - Julie Smith-Gagen
- School of Community Health Sciences, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA;
| | - Dorothy Hudig
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA; (J.J.-J.T.); (A.P.S.); (M.J.G.); (L.N.-G.)
- Correspondence: ; Tel.: +1-775-784-4430
| |
Collapse
|
2
|
Olofsson PE, Brandt L, Magnusson KEG, Frisk T, Jaldén J, Önfelt B. A collagen-based microwell migration assay to study NK-target cell interactions. Sci Rep 2019; 9:10672. [PMID: 31337806 PMCID: PMC6650390 DOI: 10.1038/s41598-019-46958-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/18/2019] [Indexed: 01/23/2023] Open
Abstract
Natural killer (NK) cell cytotoxicity in tissue is dependent on the ability of NK cells to migrate through the extracellular matrix (ECM) microenvironment. Traditional imaging studies of NK cell migration and cytotoxicity have utilized 2D surfaces, which do not properly reproduce the structural and mechanical cues that shape the migratory response of NK cells in vivo. Here, we have combined a microwell assay that allows long-term imaging and tracking of small, well-defined populations of NK cells with an interstitial ECM-like matrix. The assay allows for long-term imaging of NK-target cell interactions within a confined 3D volume. We found marked differences in motility between individual cells with a small fraction of the cells moving slowly and being confined to a small volume within the matrix, while other cells moved more freely. A majority of NK cells also exhibited transient variation in their motility, alternating between periods of migration arrest and movement. The assay could be used as a complement to in vivo imaging to study human NK cell heterogeneity in migration and cytotoxicity.
Collapse
Affiliation(s)
- Per E Olofsson
- Division of Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23 A, 171 65, Stockholm, Sweden
| | - Ludwig Brandt
- Division of Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23 A, 171 65, Stockholm, Sweden
| | - Klas E G Magnusson
- Department of Signal Processing, ACCESS Linnaeus Centre, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Thomas Frisk
- Division of Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23 A, 171 65, Stockholm, Sweden
| | - Joakim Jaldén
- Department of Signal Processing, ACCESS Linnaeus Centre, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Division of Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23 A, 171 65, Stockholm, Sweden.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden.
| |
Collapse
|