1
|
Tozaki T, Ohnuma A, Nakamura K, Hano K, Takasu M, Takahashi Y, Tamura N, Sato F, Shimizu K, Kikuchi M, Ishige T, Kakoi H, Hirota KI, Hamilton NA, Nagata SI. Detection of Indiscriminate Genetic Manipulation in Thoroughbred Racehorses by Targeted Resequencing for Gene-Doping Control. Genes (Basel) 2022; 13:genes13091589. [PMID: 36140757 PMCID: PMC9498419 DOI: 10.3390/genes13091589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The creation of genetically modified horses is prohibited in horse racing as it falls under the banner of gene doping. In this study, we developed a test to detect gene editing based on amplicon sequencing using next-generation sequencing (NGS). We designed 1012 amplicons to target 52 genes (481 exons) and 147 single-nucleotide variants (SNVs). NGS analyses showed that 97.7% of the targeted exons were sequenced to sufficient coverage (depth > 50) for calling variants. The targets of artificial editing were defined as homozygous alternative (HomoALT) and compound heterozygous alternative (ALT1/ALT2) insertion/deletion (INDEL) mutations in this study. Four models of gene editing (three homoALT with 1-bp insertions, one REF/ALT with 77-bp deletion) were constructed by editing the myostatin gene in horse fibroblasts using CRISPR/Cas9. The edited cells and 101 samples from thoroughbred horses were screened using the developed test, which was capable of identifying the three homoALT cells containing 1-bp insertions. Furthermore, 147 SNVs were investigated for their utility in confirming biological parentage. Of these, 120 SNVs were amenable to consistent and accurate genotyping. Surrogate (nonbiological) dams were excluded by 9.8 SNVs on average, indicating that the 120 SNV could be used to detect foals that have been produced by somatic cloning or embryo transfer, two practices that are prohibited in thoroughbred racing and breeding. These results indicate that gene-editing tests that include variant calling and SNV genotyping are useful to identify genetically modified racehorses.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
- Correspondence:
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
| | - Kotono Nakamura
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Kazuki Hano
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Yuji Takahashi
- Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke 329-0412, Japan
| | - Norihisa Tamura
- Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke 329-0412, Japan
| | - Fumio Sato
- Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke 329-0412, Japan
| | - Kyo Shimizu
- Registration Department, Japan Association for International Racing and Stud Book, 4-5-4, Shimbashi, Minato, Tokyo 105-0004, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
| | - Taichiro Ishige
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
| | - Kei-ichi Hirota
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
| | - Natasha A. Hamilton
- Equine Genetics Research Centre, Racing Australia, 2 Randwick Way, Scone, NSW 2337, Australia
| | - Shun-ichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
| |
Collapse
|
2
|
Detection of non-targeted transgenes by whole-genome resequencing for gene-doping control. Gene Ther 2020; 28:199-205. [PMID: 32770095 DOI: 10.1038/s41434-020-00185-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Gene doping has raised concerns in human and equestrian sports and the horseracing industry. There are two possible types of gene doping in the sports and racing industry: (1) administration of a gene-doping substance to postnatal animals and (2) generation of genetically engineered animals by modifying eggs. In this study, we aimed to identify genetically engineered animals by whole-genome resequencing (WGR) for gene-doping control. Transgenic cell lines, in which the erythropoietin gene (EPO) cDNA form was inserted into the genome of horse fibroblasts, were constructed as a model of genetically modified horse. Genome-wide screening of non-targeted transgenes was performed to find structural variation using DELLY based on split-read and paired-end algorithms and Control-FREEC based on read-depth algorithm. We detected the EPO transgene as an intron deletion in the WGR data by the split-read algorithm of DELLY. In addition, single-nucleotide polymorphisms and insertions/deletions artificially introduced in the EPO transgene were identified by WGR. Therefore, genome-wide screening using WGR can contribute to gene-doping control even if the targets are unknown. This is the first study to detect transgenes as intron deletions for gene-doping detection.
Collapse
|