1
|
Ye J, Shang H, Du H, Cao Y, Hua L, Zhu F, Liu W, Wang Y, Chen S, Qiu Z, Shen H. An Optimal Animal Model of Ischemic Stroke Established by Digital Subtraction Angiography-Guided Autologous Thrombi in Cynomolgus Monkeys. Front Neurol 2022; 13:864954. [PMID: 35547371 PMCID: PMC9083075 DOI: 10.3389/fneur.2022.864954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Ischemic stroke seriously threatens human health, characterized by the high rates of incidence, disability, and death. Developing a reliable animal model that mimics most of the features of stroke is critical for pathological studies and clinical research. In this study, we aimed to establish and examine a model of middle cerebral artery occlusion (MCAO) guided by digital subtraction angiography (DSA) in cynomolgus monkeys. Materials and Methods In this study, 15 adult male cynomolgus monkeys were enrolled. Under the guidance of DSA, a MCAO model was established by injecting an autologous venous clot into the middle cerebral artery (MCA) via femoral artery catheter. Thrombolytic therapy with alteplase (rt-PA) was given to eight of these monkeys at 3 h after the occlusion. Blood test and imaging examination, such as computed tomography angiography (CTA), CT perfusion (CTP), brain magnetic resonance imaging (MRI), and brain magnetic resonance angiography (MRA), were performed after the operation to identify the post-infarction changes. The behavioral performance of cynomolgus monkeys was continuously observed for 7 days after operation. The animals were eunthanized on the 8th day after operation, and then the brain tissues of monkeys were taken for triphenyltetrazolium chloride (TTC) staining. Results Among the 15 cynomolgus monkeys, 12 of them were successfully modeled, as confirmed by the imaging findings and staining assessment. One monkey died of brain hernia resulted from intracranial hemorrhage confirmed by necropsy. DSA, CTA, and MRA indicated the presence of an arterial occlusion. CTP and MRI showed acute focal cerebral ischemia. TTC staining revealed infarct lesions formed in the brain tissues. Conclusion Our study may provide an optimal non-human primate model for an in-depth study of the pathogenesis and treatment of focal cerebral ischemia.
Collapse
Affiliation(s)
- Juan Ye
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Hailong Shang
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Hongdi Du
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Ying Cao
- Department of Radiotherapy, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Lei Hua
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Feng Zhu
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Wei Liu
- Department of Pharmacology, Prisys Biotechnologies Co., Ltd., Shanghai, China
| | - Ying Wang
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Siyu Chen
- Department of Endocrinology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Zhifu Qiu
- Department of Pharmacology, Prisys Biotechnologies Co., Ltd., Shanghai, China
| | - Hailin Shen
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| |
Collapse
|
2
|
Yoshimura A, Ohyagi M, Ito M. T cells in the brain inflammation. Adv Immunol 2022; 157:29-58. [PMID: 37061287 DOI: 10.1016/bs.ai.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The immune system is deeply involved in autoimmune diseases of the central nervous system (CNS), such as multiple sclerosis, N-methyl-d-aspartate (NMDA) receptor encephalitis, and narcolepsy. Additionally, the immune system is involved in various brain diseases including cerebral infarction and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). In particular, reports related to T cells are increasing. T cells may also play important roles in brain deterioration and dementia that occur with aging. Our understanding of the role of immune cells in the context of the brain has been greatly improved by the use of acute ischemic brain injury models. Additionally, similar neural damage and repair events are shown to occur in more chronic brain neurodegenerative brain diseases. In this review, we focus on the role of T cells, including CD4+ T cells, CD8+ T cells and regulatory T cells (Tregs) in cerebral infarction and neurodegenerative diseases.
Collapse
|
3
|
Yang C, Gong S, Chen X, Wang M, Zhang L, Zhang L, Hu C. Analgecine regulates microglia polarization in ischemic stroke by inhibiting NF-κB through the TLR4 MyD88 pathway. Int Immunopharmacol 2021; 99:107930. [PMID: 34229178 DOI: 10.1016/j.intimp.2021.107930] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Therapeutic strategies used to attenuate inflammation and to increase recovery of neurons after a stroke include microglia anti-inflammatory (M2) polarization and repression of proinflammatory (M1). Extracts isolated from Vaccina variola-inoculated rabbit skin, for example analgecine (AGC), have been used as a therapy for patients experiencing lower back pain associated with degenerative diseases of the spine for about twenty years. In the study presented here, neuroprotective effect associated with AGC was analyzed as well as the anti-inflammatory mechanism linked to AGC in terms of attenuating microglia-mediated neuronal damage. Rats were intravenously injected with AGC after middle cerebral artery occlusion (MCAO), which showed to suppress neuronal loss and reduce neurological deficits. In addition, AGC inhibited pro-inflammatory cytokine release and increased anti-inflammatory cytokines. Furthermore, this study revealed that treatment with AGC supported microglia transition from M1 to M2 in both oxygen-glucose deprivation/reperfusion (OGD/R) and LPS/IFN-γ induced microglia cells, as well as indirectly inhibited LPS/IFN-γ-induced neuronal damage through the modulation of microglial polarization. It is also important to note that AGC inhibited NF-κB p65 phosphorylation through repressing TLR4/Myd88/TRAF6 signaling pathway. In addition, we found that TLR4 inhibition by AGC depended on Myd88. Altogether, this work supports that AGC inhibits M1 microglial polarization and promotes anti-inflammation independently and dependently on TLR4/MyD88. Since it is shown to have neuroprotective effects in this study, AGC has great potential to be used in the clinic to reduce inflammation and aid in recovery after stroke.
Collapse
Affiliation(s)
- Cuicui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Shili Gong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xiaoping Chen
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Mingyang Wang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| | - Chaoying Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| |
Collapse
|
4
|
Díaz M, Mesa-Herrera F, Marín R. DHA and Its Elaborated Modulation of Antioxidant Defenses of the Brain: Implications in Aging and AD Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10060907. [PMID: 34205196 PMCID: PMC8228037 DOI: 10.3390/antiox10060907] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
DHA (docosahexaenoic acid) is perhaps the most pleiotropic molecule in nerve cell biology. This long-chain highly unsaturated fatty acid has evolved to accomplish essential functions ranging from structural components allowing fast events in nerve cell membrane physiology to regulation of neurogenesis and synaptic function. Strikingly, the plethora of DHA effects has to take place within the hostile pro-oxidant environment of the brain parenchyma, which might suggest a molecular suicide. In order to circumvent this paradox, different molecular strategies have evolved during the evolution of brain cells to preserve DHA and to minimize the deleterious effects of its oxidation. In this context, DHA has emerged as a member of the “indirect antioxidants” family, the redox effects of which are not due to direct redox interactions with reactive species, but to modulation of gene expression within thioredoxin and glutathione antioxidant systems and related pathways. Weakening or deregulation of these self-protecting defenses orchestrated by DHA is associated with normal aging but also, more worryingly, with the development of neurodegenerative diseases. In the present review, we elaborate on the essential functions of DHA in the brain, including its role as indirect antioxidant, the selenium connection for proper antioxidant function and their changes during normal aging and in Alzheimer’s disease.
Collapse
Affiliation(s)
- Mario Díaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, School of Biology, Universidad de La Laguna, 38206 Tenerife, Spain;
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), Universidad de La Laguna, 38206 Tenerife, Spain
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38206 Tenerife, Spain;
- Correspondence:
| | - Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, School of Biology, Universidad de La Laguna, 38206 Tenerife, Spain;
| | - Raquel Marín
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38206 Tenerife, Spain;
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Medicine, Universidad de La Laguna, 38206 Tenerife, Spain
| |
Collapse
|
5
|
Local Experimental Intracerebral Hemorrhage in Rats. Biomedicines 2021; 9:biomedicines9060585. [PMID: 34064017 PMCID: PMC8224016 DOI: 10.3390/biomedicines9060585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Hemorrhagic stroke is a lethal disease, accounting for 15% of all stroke cases. However, there are very few models of stroke with a hemorrhagic etiology. Research work is devoted to studying the development of cerebrovascular disorders in rats with an intracerebral hematoma model. The aim of this study was to conduct a comprehensive short-term study, including neurological tests, biochemical blood tests, and histomorphological studies of brain structures. (2) Methods: The model was reproduced surgically by traumatizing the brain in the capsula interna area and then injecting autologous blood. Neurological deficit was assessed according to the McGrow stroke-index scale, motor activity, orientation–exploratory behavior, emotionality, and motor functions. On Day 15, after the operation, hematological and biochemical blood tests as well as histological studies of the brain were performed. (3) Results: The overall lethality of the model was 43.7%. Acute intracerebral hematoma in rats causes marked disorders of motor activity and functional impairment, as well as inflammatory processes in the nervous tissue, which persist for at least 14 days. (4) Conclusions: This model reflects the situation observed in the clinic and reproduces the main diagnostic criteria for acute disorders of cerebral circulation.
Collapse
|
6
|
Shoaib M, Becker LB. A walk through the progression of resuscitation medicine. Ann N Y Acad Sci 2020; 1507:23-36. [PMID: 33040363 DOI: 10.1111/nyas.14507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 01/11/2023]
Abstract
Cardiac arrest (CA) is a sudden and devastating disease process resulting in more deaths in the United States than many cancers, metabolic diseases, and even car accidents. Despite such a heavy mortality burden, effective treatments have remained elusive. The past century has been productive in establishing the guidelines for resuscitation, known as cardiopulmonary resuscitation (CPR), as well as developing a scientific field whose aim is to elucidate the underlying mechanisms of CA and develop therapies to save lives. CPR has been successful in reinitiating the heart after arrest, enabling a survival rate of approximately 10% in out-of-hospital CA. Although current advanced resuscitation methods, including hypothermia and extracorporeal membrane oxygenation, have improved survival in some patients, they are unlikely to significantly improve the national survival rate any further without a paradigm shift. Such a change is possible with sustained efforts in the basic and clinical sciences of resuscitation and their implementation. This review seeks to discuss the current landscape in resuscitation medicine-how we got here and where we are going.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York.,The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Lance B Becker
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York.,The Feinstein Institutes for Medical Research, Manhasset, New York.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, New York
| |
Collapse
|
7
|
Automated Assessment of Hematoma Volume of Rodents Subjected to Experimental Intracerebral Hemorrhagic Stroke by Bayes Segmentation Approach. Transl Stroke Res 2019; 11:789-798. [PMID: 31836961 DOI: 10.1007/s12975-019-00754-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
Simulating a clinical condition of intracerebral hemorrhage (ICH) in animals is key to research on the development and testing of diagnostic or treatment strategies for this high-mortality disease. In order to study the mechanism, pathology, and treatment for hemorrhagic stroke, various animal models have been developed. Measurement of hematoma volume is an important assessment parameter to evaluate post-ICH outcomes. However, due to tissue preservation conditions and variables in digitization, quantification of hematoma volume is usually labor intensive and sometimes even subjective. The objective of this study is to develop an automated method that can accurately and efficiently obtain unbiased cerebral hematoma volume. We developed an application (MATLAB program) that can delineate the brain slice from the background and use the Hue information in the Hue/Saturation/Value (HSV) color space to segment the hematoma region. The segmentation threshold of Hue is calculated based on the Bayes classifier theorem so that the minimum error is mathematically ensured and automated processing is enabled. To validate the developed method, we compared the outcomes from the developed method with the hemoglobin content by the spectrophotometric assay method. The results were linearly correlated with statistical significance. The method was also validated by digital phantoms with an error less than 5% compared with the ground truth from the phantoms. Hematoma volumes yielded by the automated processing and those obtained by the operator's manual operation are highly correlated. This automated segmentation approach can be potentially used to quantify hemorrhagic outcomes in rodent stroke models in an unbiased and efficient way.
Collapse
|
8
|
Zhou L, Ao LY, Yan YY, Li WT, Ye AQ, Li CY, Shen WY, Liang BW, Xiong-Zhu, Li YM. JLX001 Ameliorates Ischemia/Reperfusion Injury by Reducing Neuronal Apoptosis via Down-Regulating JNK Signaling Pathway. Neuroscience 2019; 418:189-204. [PMID: 31487541 DOI: 10.1016/j.neuroscience.2019.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/26/2023]
Abstract
JLX001, a novel compound with similar structure with cyclovirobuxine D (CVB-D), has been proved to exert therapeutical effects on permanent focal cerebral ischemia. However, the protective effects of JLX001 on cerebral ischemia/reperfusion (I/R) injury and its anti-apoptotic effects have not been reported. We investigated the efficacy of JLX001 in two pharmacodynamic tests (pre-treatment test and post-treatment) with rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The pharmacodynamic tests demonstrated that JLX001 ameliorated I/R injury by reducing infarct sizes and brain edema. The results of Morris water maze, neurological scores, cylinder test and posture reflex test implied that JLX001 improved the learning, memory and motor ability after MCAO/R in the long term. Anti-apoptotic effects of JLX001 and its regulation of cytosolic c-Jun N-terminal Kinases (JNKs) signal pathway were confirmed in vivo by co-immunofluorescence staining and western immunoblotting. Furthermore, primary cortical neuron cultures were prepared and exposed to oxygen glucose deprivation/reoxygenation (OGD/R) for in vitro studies. Cytotoxicity test and mitochondrial membrane potential (MMP) test showed that JLX001 enhanced cell survival rate and maintained MMP. Flow cytometry and TdT-mediated dUTP-X nick end labeling (TUNEL) staining demonstrated the anti-apoptotic effects of JLX001 in vitro. Likewise, JLX001 regulated JNK signal pathway in vivo, which was also confirmed by western immunoblotting. Collectively, this study presents the first evidence that JLX001 exerted protective effects against I/R injury by reducing neuronal apoptosis via down-regulating JNK signaling pathway.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lu-Yao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yun-Yi Yan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wan-Ting Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - An-Qi Ye
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Yang Shen
- School of Sciences, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bing-Wen Liang
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, PR China
| | - Xiong-Zhu
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, PR China; Medicine & Chemical Institute, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|