1
|
Pereira WJ, de Castro Rodrigues Pappas M, Pappas GJ. Computational Protocol for DNA Methylation Profiling in Plants Using Restriction Enzyme-Based Genome Reduction. Methods Mol Biol 2023; 2638:23-36. [PMID: 36781633 DOI: 10.1007/978-1-0716-3024-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Epigenetics can be described as heritable phenotype changes that do not involve alterations in the underlying DNA sequence. Having widespread implications in fundamental biological phenomena, there is an increased interest in characterizing epigenetic modifications and studying their functional implications. DNA methylation, particularly 5-methylcytosine (5mC), stands out as the most studied epigenetic mark and several methodologies have been created to investigate it. With the development of next-generation sequencing technologies, several approaches to DNA methylation profiling were conceived, with differences in resolution and genomic scope. Besides the gold standard whole-genome bisulfite sequencing, which is costly for population-scale studies, genomic reduced representation methods emerged as viable alternatives to investigate methylation loci. Whole-genome bisulfite sequencing provides single-base methylation resolution but is costly for population-scale studies. Genomic reduction methods emerged as viable alternatives to investigate a fraction of methylated loci. One of such approaches uses double digestion with the restriction enzymes PstI and one of the isoschizomers, MspI and HpaII, with differential sensitivity to 5mC at the restriction site. Statistical comparison of sequencing reads counts obtained from the two libraries for each sample (PstI-MspI and PstI-HpaII) is used to infer the methylation status of thousands of cytosines. Here, we describe a general overview of the technique and a computational protocol to process the generated data to provide a medium-scale inventory of methylated sites in plant genomes. The software is available at https://github.com/wendelljpereira/DArTseqMet .
Collapse
Affiliation(s)
- Wendell Jacinto Pereira
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, USA.,Department of Cell Biology, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | | | | |
Collapse
|
2
|
Current Advances in DNA Methylation Analysis Methods. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8827516. [PMID: 33824878 PMCID: PMC8007345 DOI: 10.1155/2021/8827516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
DNA methylation is one of the epigenetic changes, which plays a major role in regulating gene expression and, thus, many biological processes and diseases. There are several methods for determining the methylation of DNA samples. However, selecting the most appropriate method for answering biological questions appears to be a challenging task. The primary methods in DNA methylation focused on identifying the state of methylation of the examined genes and determining the total amount of 5-methyl cytosine. The study of DNA methylation at a large scale of genomic levels became possible following the use of microarray hybridization technology. The new generation of sequencing platforms now allows the preparation of genomic maps of DNA methylation at the single-open level. This review includes the majority of methods available to date, introducing the most widely used methods, the bisulfite treatment, biological identification, and chemical cutting along with their advantages and disadvantages. The techniques are then scrutinized according to their robustness, high throughput capabilities, and cost.
Collapse
|
3
|
Busconi M, Wischnitzki E, Del Corvo M, Colli L, Soffritti G, Stagnati L, Fluch S, Sehr EM, de los Mozos Pascual M, Fernández JA. Epigenetic Variability Among Saffron Crocus ( Crocus sativus L.) Accessions Characterized by Different Phenotypes. FRONTIERS IN PLANT SCIENCE 2021; 12:642631. [PMID: 33747022 PMCID: PMC7970008 DOI: 10.3389/fpls.2021.642631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/15/2021] [Indexed: 05/10/2023]
Abstract
This work represents the first epigenomic study carried out on saffron crocus. Five accessions of saffron, showing differences in tepal pigmentation, yield of saffron and flowering time, were analyzed at the epigenetic level by applying a methylation-sensitive restriction enzyme-sequencing (MRE-seq) approach. Five accession-specific hypomethylomes plus a reference hypomethylome, generated by combining the sequence data from the single accessions, were obtained. Assembled sequences were annotated against existing online databases. In the absence of the Crocus genome, the rice genome was mainly used as the reference as it is the best annotated genome among monocot plants. Comparison of the hypomethylomes revealed many differentially methylated regions, confirming the high epigenetic variability present among saffron accessions, including sequences encoding for proteins that could be good candidates to explain the accessions' alternative phenotypes. In particular, transcription factors involved in flowering process (MADS-box and TFL) and for the production of pigments (MYB) were detected. Finally, by comparing the generated sequences of the different accessions, a high number of SNPs, likely having arisen as a consequence of the prolonged vegetative propagation, were detected, demonstrating surprisingly high genetic variability. Gene ontology (GO) was performed to map and visualize sequence polymorphisms located within the GOs and to compare their distributions among different accessions. As well as suggesting the possible existence of alternative phenotypes with a genetic basis, a clear difference in polymorphic GO is present among accessions based on their geographic origin, supporting a possible signature of selection in the Indian accession with respect to the Spanish ones.
Collapse
Affiliation(s)
- Matteo Busconi
- Faculty of Agriculture, Food and Environmental Sciences, Research Centre BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
- *Correspondence: Matteo Busconi,
| | - Elisabeth Wischnitzki
- Centre for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Marcello Del Corvo
- Faculty of Agriculture, Food and Environmental Sciences, Research Centre BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Licia Colli
- Faculty of Agriculture, Food and Environmental Sciences, Research Centre BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giovanna Soffritti
- Faculty of Agriculture, Food and Environmental Sciences, Research Centre BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Lorenzo Stagnati
- Faculty of Agriculture, Food and Environmental Sciences, Research Centre BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Silvia Fluch
- Centre for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Eva Maria Sehr
- Centre for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Marcelino de los Mozos Pascual
- Centro de Investigación Agroforestal de Albaladejito, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Cuenca, Spain
| | - José Antonio Fernández
- IDR-Biotechnology and Natural Resources, Universidad de Castilla—La Mancha, Albacete, Spain
| |
Collapse
|
4
|
Abstract
DNA methylation is a process by which methyl groups are added to cytosine or adenine. DNA methylation can change the activity of the DNA molecule without changing the sequence. Methylation of 5-methylcytosine (5mC) is widespread in both eukaryotes and prokaryotes, and it is a very important epigenetic modification event, which can regulate gene activity and influence a number of key processes such as genomic imprinting, cell differentiation, transcriptional regulation, and chromatin remodeling. Profiling DNA methylation across the genome is critical to understanding the influence of methylation in normal biology and diseases including cancer. Recent discoveries of 5-methylcytosine (5mC) oxidation derivatives including 5-hydroxymethylcytosine (5hmC), 5-formylcytsine (5fC), and 5-carboxycytosine (5caC) in mammalian genome further expand our understanding of the methylation regulation. Genome-wide analyses such as microarrays and next-generation sequencing technologies have been used to assess large fractions of the methylome. A number of different quantitative approaches have also been established to map the DNA epigenomes with single-base resolution, as represented by the bisulfite-based methods, such as classical bisulfite sequencing, pyrosequencing etc. These methods have been used to generate base-resolution maps of 5mC and its oxidation derivatives in genomic samples. The focus of this chapter is to provide the methodologies that have been developed to detect the cytosine derivatives in the genomic DNA.
Collapse
Affiliation(s)
- Lingfang Feng
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, P. R. China
| | - Jianlin Lou
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, P. R. China.
| |
Collapse
|