1
|
Vishnu VY, Lemmers RJLF, Reyaz A, Mishra R, Ahmad T, van der Vliet PJ, Kretkiewicz MM, Macken WL, Efthymiou S, Dominik N, Morrow JM, Bhatia R, Wilson LA, Houlden H, Hanna MG, Bugiardini E, van der Maarel SM, Srivastava MVP. The first genetically confirmed cohort of Facioscapulohumeral Muscular Dystrophy from Northern India. Eur J Hum Genet 2024; 32:1053-1064. [PMID: 38664571 PMCID: PMC11368952 DOI: 10.1038/s41431-024-01577-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/12/2024] [Accepted: 02/21/2024] [Indexed: 09/04/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is the third most common form of hereditary myopathy. Sixty per cent of the world's population lives in Asia, so a significant percentage of the world's FSHD participants is expected to live there. To date, most FSHD studies have involved individuals of European descent, yet small-scale studies of East-Asian populations suggest that the likelihood of developing FSHD may vary. Here, we present the first genetically confirmed FSHD cohort of Indian ancestry, which suggests a pathogenic FSHD1 allele size distribution intermediate between European and North-East Asian populations and more asymptomatic carriers of 4 unit and 5 unit FSHD1 alleles than observed in European populations. Our data provides important evidence of differences relevant to clinical diagnostics and underscores the need for global FSHD participation in research and trial-ready Indian FSHD cohorts.
Collapse
Affiliation(s)
- Venugopalan Y Vishnu
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Alisha Reyaz
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Rinkle Mishra
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Tanveer Ahmad
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Patrick J van der Vliet
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Marcelina M Kretkiewicz
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - William L Macken
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, UK
| | - Natalia Dominik
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, UK
| | - Jasper M Morrow
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, UK
| | - Rohit Bhatia
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Lindsay A Wilson
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK.
| | - Enrico Bugiardini
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, UK
| | | | - M V Padma Srivastava
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Delhi, India.
| |
Collapse
|
2
|
Lemmers RJLF, Butterfield R, van der Vliet PJ, de Bleecker JL, van der Pol L, Dunn DM, Erasmus CE, D'Hooghe M, Verhoeven K, Balog J, Bigot A, van Engelen B, Statland J, Bugiardini E, van der Stoep N, Evangelista T, Marini-Bettolo C, van den Bergh P, Tawil R, Voermans NC, Vissing J, Weiss RB, van der Maarel SM. Autosomal dominant in cis D4Z4 repeat array duplication alleles in facioscapulohumeral dystrophy. Brain 2024; 147:414-426. [PMID: 37703328 PMCID: PMC10834250 DOI: 10.1093/brain/awad312] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) has a unique genetic aetiology resulting in partial chromatin relaxation of the D4Z4 macrosatellite repeat array on 4qter. This D4Z4 chromatin relaxation facilitates inappropriate expression of the transcription factor DUX4 in skeletal muscle. DUX4 is encoded by a retrogene that is embedded within the distal region of the D4Z4 repeat array. In the European population, the D4Z4 repeat array is usually organized in a single array that ranges between 8 and 100 units. D4Z4 chromatin relaxation and DUX4 derepression in FSHD is most often caused by repeat array contraction to 1-10 units (FSHD1) or by a digenic mechanism requiring pathogenic variants in a D4Z4 chromatin repressor like SMCHD1, combined with a repeat array between 8 and 20 units (FSHD2). With a prevalence of 1.5% in the European population, in cis duplications of the D4Z4 repeat array, where two adjacent D4Z4 arrays are interrupted by a spacer sequence, are relatively common but their relationship to FSHD is not well understood. In cis duplication alleles were shown to be pathogenic in FSHD2 patients; however, there is inconsistent evidence for the necessity of an SMCHD1 mutation for disease development. To explore the pathogenic nature of these alleles we compared in cis duplication alleles in FSHD patients with or without pathogenic SMCHD1 variant. For both groups we showed duplication-allele-specific DUX4 expression. We studied these alleles in detail using pulsed-field gel electrophoresis-based Southern blotting and molecular combing, emphasizing the challenges in the characterization of these rearrangements. Nanopore sequencing was instrumental to study the composition and methylation of the duplicated D4Z4 repeat arrays and to identify the breakpoints and the spacer sequence between the arrays. By comparing the composition of the D4Z4 repeat array of in cis duplication alleles in both groups, we found that specific combinations of proximal and distal repeat array sizes determine their pathogenicity. Supported by our algorithm to predict pathogenicity, diagnostic laboratories should now be furnished to accurately interpret these in cis D4Z4 repeat array duplications, alleles that can easily be missed in routine settings.
Collapse
Affiliation(s)
- Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | - Patrick J van der Vliet
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | - Ludo van der Pol
- University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Diane M Dunn
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Corrie E Erasmus
- Neuromuscular Centre Nijmegen, Radboud University Nijmegen Medical Centre, 6525 GA, Nijmegen, The Netherlands
| | - Marc D'Hooghe
- Department of Neurology, Algemeen Ziekenhuis Sint-Jan, 8000, Brugge, Belgium
| | - Kristof Verhoeven
- Department of Neurology, Algemeen Ziekenhuis Sint-Jan, 8000, Brugge, Belgium
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Anne Bigot
- Sorbonne Université, Inserm UMRS974, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Baziel van Engelen
- Neuromuscular Centre Nijmegen, Radboud University Nijmegen Medical Centre, 6525 GA, Nijmegen, The Netherlands
| | | | - Enrico Bugiardini
- National Hospital For Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Teresinha Evangelista
- Unité de Morphologie Neuromusculaire, Institut de Myologie, AP-HP, F-75013, Paris, France
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Faculty of Medical Sciences, Newcastle upon Tyne, NE1 3BZ, UK
| | | | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, NY 14642, Rochester, USA
| | - Nicol C Voermans
- Neuromuscular Centre Nijmegen, Radboud University Nijmegen Medical Centre, 6525 GA, Nijmegen, The Netherlands
| | - John Vissing
- Department of Neurology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
3
|
Guruju NM, Jump V, Lemmers R, Van Der Maarel S, Liu R, Nallamilli BR, Shenoy S, Chaubey A, Koppikar P, Rose R, Khadilkar S, Hegde M. Molecular Diagnosis of Facioscapulohumeral Muscular Dystrophy in Patients Clinically Suspected of FSHD Using Optical Genome Mapping. Neurol Genet 2023; 9:e200107. [PMID: 38021397 PMCID: PMC10664978 DOI: 10.1212/nxg.0000000000200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023]
Abstract
Background and Objectives Facioscapulohumeral muscular dystrophy (FSHD) represents the third most common muscular dystrophy in the general population and is characterized by progressive and often asymmetric muscle weakness of the face, upper extremities, arms, lower leg, and hip girdle. In FSHD type 1, contraction of the number of D4Z4 repeats to 1-10 on the chromosome 4-permissive allele (4qA) results in abnormal epigenetic derepression of the DUX4 gene in skeletal muscle. In FSHD type 2, epigenetic derepression of the DUX4 gene on the permissive allele (4qA) with normal-sized D4Z4 repeats (mostly 8-20) is caused by heterozygous pathogenic variants in chromatin modifier genes such as SMCHD1, DNMT3B, or LRIF1. We present validation of the optical genome mapping (OGM) platform for accurate mapping of the D4Z4 repeat size, followed by diagnostic testing of 547 cases with a suspected clinical diagnosis of FSHD and next-generation sequencing (NGS) of the SMCHD1 gene to identify cases with FSHD2. Methods OGM with Bionano Genomics Saphyr and EnFocus FSHD analysis software was used to identify FSHD haplotypes and D4Z4 repeat number and compared with the gold standard of Southern blot-based diagnosis. A custom Agilent SureSelect enrichment kit was used to enrich SMCHD1, followed by NGS on an Illumina system with 100-bp paired-end reads. Copy number variants were assessed using NxClinical software. Results We performed OGM for the diagnosis of FSHD in 547 patients suspected of FSHD between December 2019 and December 2022, including 301 male (55%) and 246 female patients (45%). Overall, 308 of the referred patients were positive for D4Z4 contraction on a permissive haplotype, resulting in a diagnosis of FSHD1. A total of 252 of 547 patients were referred for concurrent testing for FSHD1 and FSHD2. This resulted in the identification of FSHD2 in 9/252 (3.6%) patients. In our FSHD2 cohort, the 4qA allele size ranged from 8 to 18 repeats. Among FSHD1-positive cases, 2 patients had biallelic contraction and 4 patients had homozygous contraction and showed early onset of clinical features. Nine of the 308 patients (3%) positive for 4qA contraction had mosaic 4q alleles with contraction on at least one 4qA allele. The overall diagnostic yield in our cohort was 58%. Discussion A combination of OGM to identify the FSHD haplotype and D4Z4 repeat number and NGS to identify sequence and copy number variants in the SMCHD1 gene is a practical and cost-effective option with increased precision for accurate diagnosis of FSHD types 1 and 2.
Collapse
Affiliation(s)
- Naga M Guruju
- From the Revvity Omics (N.M.G., V.J., Ruby Liu, B.R.N., S.S., R.R., M.H.), Pittsburgh, PA; Leiden University Medical Centre (Richard Lemmers, S.V.D.M.), Netherlands; Bionano Genomics (A.C.), San Diego, CA; UT Dallas (P.K.), TX; Bombay Hospital (S.K.), Mumbai, India
| | - Vanessa Jump
- From the Revvity Omics (N.M.G., V.J., Ruby Liu, B.R.N., S.S., R.R., M.H.), Pittsburgh, PA; Leiden University Medical Centre (Richard Lemmers, S.V.D.M.), Netherlands; Bionano Genomics (A.C.), San Diego, CA; UT Dallas (P.K.), TX; Bombay Hospital (S.K.), Mumbai, India
| | - Richard Lemmers
- From the Revvity Omics (N.M.G., V.J., Ruby Liu, B.R.N., S.S., R.R., M.H.), Pittsburgh, PA; Leiden University Medical Centre (Richard Lemmers, S.V.D.M.), Netherlands; Bionano Genomics (A.C.), San Diego, CA; UT Dallas (P.K.), TX; Bombay Hospital (S.K.), Mumbai, India
| | - Silvere Van Der Maarel
- From the Revvity Omics (N.M.G., V.J., Ruby Liu, B.R.N., S.S., R.R., M.H.), Pittsburgh, PA; Leiden University Medical Centre (Richard Lemmers, S.V.D.M.), Netherlands; Bionano Genomics (A.C.), San Diego, CA; UT Dallas (P.K.), TX; Bombay Hospital (S.K.), Mumbai, India
| | - Ruby Liu
- From the Revvity Omics (N.M.G., V.J., Ruby Liu, B.R.N., S.S., R.R., M.H.), Pittsburgh, PA; Leiden University Medical Centre (Richard Lemmers, S.V.D.M.), Netherlands; Bionano Genomics (A.C.), San Diego, CA; UT Dallas (P.K.), TX; Bombay Hospital (S.K.), Mumbai, India
| | - Babi R Nallamilli
- From the Revvity Omics (N.M.G., V.J., Ruby Liu, B.R.N., S.S., R.R., M.H.), Pittsburgh, PA; Leiden University Medical Centre (Richard Lemmers, S.V.D.M.), Netherlands; Bionano Genomics (A.C.), San Diego, CA; UT Dallas (P.K.), TX; Bombay Hospital (S.K.), Mumbai, India
| | - Suresh Shenoy
- From the Revvity Omics (N.M.G., V.J., Ruby Liu, B.R.N., S.S., R.R., M.H.), Pittsburgh, PA; Leiden University Medical Centre (Richard Lemmers, S.V.D.M.), Netherlands; Bionano Genomics (A.C.), San Diego, CA; UT Dallas (P.K.), TX; Bombay Hospital (S.K.), Mumbai, India
| | - Alka Chaubey
- From the Revvity Omics (N.M.G., V.J., Ruby Liu, B.R.N., S.S., R.R., M.H.), Pittsburgh, PA; Leiden University Medical Centre (Richard Lemmers, S.V.D.M.), Netherlands; Bionano Genomics (A.C.), San Diego, CA; UT Dallas (P.K.), TX; Bombay Hospital (S.K.), Mumbai, India
| | - Pratik Koppikar
- From the Revvity Omics (N.M.G., V.J., Ruby Liu, B.R.N., S.S., R.R., M.H.), Pittsburgh, PA; Leiden University Medical Centre (Richard Lemmers, S.V.D.M.), Netherlands; Bionano Genomics (A.C.), San Diego, CA; UT Dallas (P.K.), TX; Bombay Hospital (S.K.), Mumbai, India
| | - Rajiv Rose
- From the Revvity Omics (N.M.G., V.J., Ruby Liu, B.R.N., S.S., R.R., M.H.), Pittsburgh, PA; Leiden University Medical Centre (Richard Lemmers, S.V.D.M.), Netherlands; Bionano Genomics (A.C.), San Diego, CA; UT Dallas (P.K.), TX; Bombay Hospital (S.K.), Mumbai, India
| | - Satish Khadilkar
- From the Revvity Omics (N.M.G., V.J., Ruby Liu, B.R.N., S.S., R.R., M.H.), Pittsburgh, PA; Leiden University Medical Centre (Richard Lemmers, S.V.D.M.), Netherlands; Bionano Genomics (A.C.), San Diego, CA; UT Dallas (P.K.), TX; Bombay Hospital (S.K.), Mumbai, India
| | - Madhuri Hegde
- From the Revvity Omics (N.M.G., V.J., Ruby Liu, B.R.N., S.S., R.R., M.H.), Pittsburgh, PA; Leiden University Medical Centre (Richard Lemmers, S.V.D.M.), Netherlands; Bionano Genomics (A.C.), San Diego, CA; UT Dallas (P.K.), TX; Bombay Hospital (S.K.), Mumbai, India
| |
Collapse
|
4
|
Lemmers RJLF, Vliet PJ, Granado DSL, Stoep N, Buermans H, Schendel R, Schimmel J, Visser M, Coster R, Jeanpierre M, Laforet P, Upadhyaya M, Engelen B, Sacconi S, Tawil R, Voermans NC, Rogers M, van der Maarel SM. High resolution breakpoint junction mapping of proximally extended D4Z4 deletions in FSHD1 reveals evidence for a founder effect. Hum Mol Genet 2021; 31:748-760. [PMID: 34559225 DOI: 10.1093/hmg/ddab250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 01/09/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy clinically characterized by weakness in the facial, shoulder girdle and upper arm muscles. FSHD is caused by chromatin relaxation of the D4Z4 macrosatellite repeat, mostly by a repeat contraction, facilitating ectopic expression of DUX4 in skeletal muscle. Genetic diagnosis for FSHD is generally based on the sizing and haplotyping of the D4Z4 repeat on chromosome 4 by Southern blotting, molecular combing or single-molecule optical mapping, which is usually straight forward but can be complicated by atypical rearrangements of the D4Z4 repeat. One of these rearrangements is a D4Z4 proximally-extended deletion (DPED) allele, where not only the D4Z4 repeat is partially deleted, but also sequences immediately proximal to the repeat are lost, which can impede accurate diagnosis in all genetic methods. Previously, we identified several DPED alleles in FSHD and estimated the size of the proximal deletions by a complex pulsed-field gel electrophoresis and Southern blot strategy. Here, using next generation sequencing, we have defined the breakpoint junctions of these DPED alleles at the base pair resolution in 12 FSHD families and 4 control individuals facilitating a PCR-based diagnosis of these DPED alleles. Our results show that half of the DPED alleles are derivates of an ancient founder allele. For some DPED alleles we found that genetic elements are deleted such as DUX4c, FRG2, DBE-T and myogenic enhancers necessitating re-evaluation of their role in FSHD pathogenesis.
Collapse
Affiliation(s)
- Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick J Vliet
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Nienke Stoep
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk Buermans
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marianne Visser
- Academic Medical Center, Department of Neurology, Amsterdam, The Netherlands
| | - Rudy Coster
- Department of Pediatrics, Division of Pediatric Neurology, Ghent University Hospital, Ghent, Belgium
| | | | - Pascal Laforet
- Nord-Est/Ile-de-France Neuromuscular Reference Center, FHU PHENIX, Neurology Department, Raymond-Poincaré Hospital, Versailles Saint-Quentin-en-Yvelines - Paris Saclay University, Garches, France
| | - Meena Upadhyaya
- Department of Medical Genetics, Cardiff University, Cardif, UK
| | - Baziel Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, The Netherlands
| | - Sabrina Sacconi
- Centre de référence des Maladies neuromusculaires, Nice University Hospital, Nice, France
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, The Netherlands
| | - Mark Rogers
- Department of Medical Genetics, Cardiff University, Cardif, UK
| | | |
Collapse
|
5
|
Precise Epigenetic Analysis Using Targeted Bisulfite Genomic Sequencing Distinguishes FSHD1, FSHD2, and Healthy Subjects. Diagnostics (Basel) 2021; 11:diagnostics11081469. [PMID: 34441403 PMCID: PMC8393475 DOI: 10.3390/diagnostics11081469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
The true prevalence of facioscapulohumeral muscular dystrophy (FSHD) is unknown due to difficulties with accurate clinical evaluation and the complexities of current genetic diagnostics. Interestingly, all forms of FSHD are linked to epigenetic changes in the chromosome 4q35 D4Z4 macrosatellite, suggesting that epigenetic analysis could provide an avenue for sequence-based FSHD diagnostics. However, studies assessing DNA methylation at the FSHD locus have produced conflicting results; thus, the utility of this technique as an FSHD diagnostic remains controversial. Here, we critically compared two protocols for epigenetic analysis of the FSHD region using bisulfite genomic sequencing: Jones et al., that contends to be individually diagnostic for FSHD1 and FSHD2, and Gaillard et al., that can identify some changes in DNA methylation levels between groups of clinically affected FSHD and healthy subjects, but is not individually diagnostic for any form of FSHD. We performed both sets of assays on the same genetically confirmed samples and showed that this discrepancy was due strictly to differences in amplicon specificity. We propose that the epigenetic status of the FSHD-associated D4Z4 arrays, when accurately assessed, is a diagnostic for genetic FSHD and can readily distinguish between healthy, FSHD1 and FSHD2. Thus, epigenetic diagnosis of FSHD, which can be performed on saliva DNA, will greatly increase accessibility to FSHD diagnostics for populations around the world.
Collapse
|
6
|
FSHD1 Diagnosis in a Russian Population Using a qPCR-Based Approach. Diagnostics (Basel) 2021; 11:diagnostics11060982. [PMID: 34071558 PMCID: PMC8226754 DOI: 10.3390/diagnostics11060982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant myodystrophy. Approximately 95% of cases of FSHD are caused by partial deletion of the D4Z4 macrosatellite tandem repeats on chromosome 4q35. The existing FSHD1 diagnostic methods are laborious and not widely used. Here, we present a comprehensive analysis of the currently used diagnostic methods (Southern blotting and molecular combing) against a new qPCR-based approach for FSHD1 diagnosis. We observed 93% concordance between the results obtained by the new qPCR-based approach, reference Southern blotting and molecular combing methods. Applying the qPCR-based approach in the studied population, we observed a prevalence (64.9%) of the permissive alleles in the range of 3–6 D4Z4 units for a group of patients, while in a group of carriers, the permissive alleles were mostly (84.6%) present in the range of 6–9 D4Z4 units. No prevalence of disease penetrance depending on gender was observed. The results confirmed the earlier established inverse correlation between permissive allele size and disease severity, disease penetrance. The results suggest the applicability of the qPCR-based approach for FSHD1 diagnosis and its robustness in a basic molecular genetics laboratory. To our knowledge, this is the first study of FSHD1 permissive allele distribution in a Russian population.
Collapse
|
7
|
Rieken A, Bossler AD, Mathews KD, Moore SA. CLIA Laboratory Testing for Facioscapulohumeral Dystrophy: A Retrospective Analysis. Neurology 2020; 96:e1054-e1062. [PMID: 33443126 PMCID: PMC8055331 DOI: 10.1212/wnl.0000000000011412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Objective To summarize facioscapulohumeral muscular dystrophy (FSHD) diagnostic testing results from the University of Iowa Molecular Pathology Laboratory. Methods All FSHD tests performed in the diagnostic laboratory from January 2015 to July 2019 were retrospectively reviewed. Testing was by restriction enzyme digestion and Southern blot analysis with sequencing of SMCHD1, if indicated. Cases were classified as FSHD1 (4q35 EcoRI size ≤40 kb; 1–10 D4Z4 repeats), FSHD2 (permissive 4q35A allele, D4Z4 hypomethylation, and pathogenic SMCHD1 variant), or non-FSHD1,2. We also noted cases with borderline EcoRI fragment size (41–43 kb; 11 D4Z4 repeats), cases that meet criteria for both FSHD1 and FSHD2, somatic mosaicism, and cases with hybrid alleles that add complexity to test interpretation. Results Of the 1,594 patients with FSHD tests included in the analysis, 703 (44.1%) were diagnosed with FSHD. Among these positive tests, 664 (94.5%) met criteria for FSHD1 and 39 (5.5%) met criteria for FSHD2. Of all 1,594 cases, 20 (1.3%) had a 4q35 allele of borderline size, 23 (1.5%) were somatic mosaics, and 328 (20.9%) had undergone translocation events. Considering only cases with at least 1 4q35A allele, D4Z4 repeat number differed significantly among groups: FSHD1 cases median 6.0 (interquartile range [IQR] 4–7) repeats, FSHD2 cases 15.0 (IQR 12–22) repeats, and non-FSHD1,2 cases 28.0 (IQR 19–40) repeats. Conclusion FSHD1 accounts for 94.5% of genetically confirmed cases of FSHD. The data show a continuum of D4Z4 repeat numbers with FSHD1 samples having the fewest, FSHD2 an intermediate number, and non-FSHD1,2 the most.
Collapse
Affiliation(s)
- Autumn Rieken
- From the Departments of Pathology (A.R., A.D.B., S.A.M.) and Pediatrics and Neurology (A.R., K.D.M.), Carver College of Medicine, The University of Iowa, Iowa City
| | - Aaron D Bossler
- From the Departments of Pathology (A.R., A.D.B., S.A.M.) and Pediatrics and Neurology (A.R., K.D.M.), Carver College of Medicine, The University of Iowa, Iowa City
| | - Katherine D Mathews
- From the Departments of Pathology (A.R., A.D.B., S.A.M.) and Pediatrics and Neurology (A.R., K.D.M.), Carver College of Medicine, The University of Iowa, Iowa City
| | - Steven A Moore
- From the Departments of Pathology (A.R., A.D.B., S.A.M.) and Pediatrics and Neurology (A.R., K.D.M.), Carver College of Medicine, The University of Iowa, Iowa City.
| |
Collapse
|
8
|
Generation of genetically matched hiPSC lines from two mosaic facioscapulohumeral dystrophy type 1 patients. Stem Cell Res 2019; 40:101560. [PMID: 31518905 DOI: 10.1016/j.scr.2019.101560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 11/23/2022] Open
Abstract
Facioscapulohumeral dystrophy type 1 (FSHD1) is caused by contraction of the D4Z4 repeat array on chromosome 4q resulting in sporadic misexpression of the transcription factor DUX4 in skeletal muscle tissue. In ~4% of families, de novo D4Z4 contractions occur after fertilization resulting in somatic mosaicism with control and FSHD1 cell populations present within the same patient. Reprogramming of mosaic fibroblasts from two FSHD1 patients into human induced pluripotent stem cells (hiPSCs) generated genetically matched control and FSHD1 hiPSC lines. All hiPSC lines contained a normal karyotype, expressed pluripotency genes and differentiated into cells from the three germ layers.
Collapse
|
9
|
Lemmers RJLF, van der Vliet PJ, Vreijling JP, Henderson D, van der Stoep N, Voermans N, van Engelen B, Baas F, Sacconi S, Tawil R, van der Maarel SM. Cis D4Z4 repeat duplications associated with facioscapulohumeral muscular dystrophy type 2. Hum Mol Genet 2019; 27:3488-3497. [PMID: 30281091 DOI: 10.1093/hmg/ddy236] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/15/2018] [Indexed: 12/26/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy, known in genetic forms FSHD1 and FSHD2, is associated with D4Z4 repeat array chromatin relaxation and somatic derepression of DUX4 located in D4Z4. A complete copy of DUX4 is present on 4qA chromosomes, but not on the D4Z4-like repeats of chromosomes 4qB or 10. Normally, the D4Z4 repeat varies between 8 and 100 units, while in FSHD1 it is only 1-10 units. In the rare genetic form FSHD2, a combination of a 4qA allele with a D4Z4 repeat size of 8-20 units and heterozygous pathogenic variants in the chromatin modifier SMCHD1 causes DUX4 derepression and disease. In this study, we identified 11/79 (14%) FSHD2 patients with unusually large 4qA alleles of 21-70 D4Z4 units. By a combination of Southern blotting and molecular combing, we show that 8/11 (73%) of these unusually large 4qA alleles represent duplication alleles in which the long D4Z4 repeat arrays are followed by a small FSHD-sized D4Z4 repeat array duplication. We also show that these duplication alleles are associated with DUX4 expression. This duplication allele frequency is significantly higher than in controls (2.9%), FSHD1 patients (1.4%) and in FSHD2 patients with typical 4qA alleles of 8-20 D4Z4 units (1.5%). Segregation analysis shows that, similar to typical 8-20 units FSHD2 alleles, duplication alleles only cause FSHD in combination with a pathogenic variant in SMCHD1. We conclude that cis duplications of D4Z4 repeats explain DUX4 expression and disease presentation in FSHD2 families with unusual long D4Z4 repeats on 4qA chromosomes.
Collapse
Affiliation(s)
| | | | - Jeroen P Vreijling
- Laboratory for Diagnostic Genome Analysis, Leiden University Medical Center, Leiden, RC, Netherlands
| | - Don Henderson
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nienke van der Stoep
- Laboratory for Diagnostic Genome Analysis, Leiden University Medical Center, Leiden, RC, Netherlands
| | - Nicol Voermans
- Neuromuscular Centre Nijmegen, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, HB, Netherlands
| | - Baziel van Engelen
- Neuromuscular Centre Nijmegen, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, HB, Netherlands
| | - Frank Baas
- Laboratory for Diagnostic Genome Analysis, Leiden University Medical Center, Leiden, RC, Netherlands
| | - Sabrina Sacconi
- Centre de Référence des Maladies Neuromusculaires and CNRS UMR6543, Nice University Hospital, Nice, France
| | - Rabi Tawil
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
10
|
Esnault J, Missaoui B, Bendaya S, Mane M, Eymard B, Laforet P, Stojkovic T, Behin A, Thoumie P. Isokinetic assessment of trunk muscles in facioscapulohumeral muscular dystrophy type 1 patients. Neuromuscul Disord 2018; 28:996-1002. [PMID: 30415787 DOI: 10.1016/j.nmd.2018.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
Facioscapulohumeral muscular dystrophy type 1 is the third most common inherited myopathy. Its severity is proportionate to the loss of microsatellite D4Z4 repetitions, which are below 10. Patients suffer from weakness in facial muscles, shoulder girdles and ankle dorsiflexors. Trunk impairment is reported in few studies. To assess correlation between D4Z4 number of repetitions in facioscapulohumeral muscular dystrophy type 1 patients and trunk extensors and flexors isokinetic peak torque, 48 patients with southern Blot confirmed facioscapulohumeral muscular dystrophy type 1 were enrolled to perform clinical evaluation (Ricci's Clinical Severity Scoring, Berg Balance Scale, Functional Reach Test, timed up-and-go test, six-minute walk test, functional independence measure) and trunk isokinetic assessment. Trunk extensors and flexors isokinetic peak torque at 60°/sec were significantly correlated with number of D4Z4 microsatellite repetitions, sex, weight and age-independent (r = 0.391 [0.121; 0.662], p < 0.006 and r = 0.334 [0.028; 0.641], p < 0.033, respectively). Ricci's Clinical Severity Scoring was significantly correlated to trunk extensors isokinetic peak torque at 60°/sec, sex and weight-independent (r = -0.743 [-0.938; -0.548], p < 0.0001). This study demonstrates moderate correlation between pathologic compression of D4Z4 microsatellite array and trunk extensors isokinetic strength among facioscapulohumeral muscular dystrophy type I patients.
Collapse
Affiliation(s)
- Julien Esnault
- Hôpital Rothschild, Service de Reeducation Neuro-orthopédique, 5 Rue Santerre 75012 Paris, France.
| | - Besma Missaoui
- Hôpital Rothschild, Service de Reeducation Neuro-orthopédique, 5 Rue Santerre 75012 Paris, France
| | - Samy Bendaya
- Hôpital Rothschild, Service de Reeducation Neuro-orthopédique, 5 Rue Santerre 75012 Paris, France
| | - Michele Mane
- Hôpital Rothschild, Service de Reeducation Neuro-orthopédique, 5 Rue Santerre 75012 Paris, France
| | - Bruno Eymard
- Hôpital Pitié-Salpêtrière, Institut de Myologie, 47-83 Boulevard de l'Hôpital 75013 Paris, France
| | - Pascal Laforet
- Hôpital Pitié-Salpêtrière, Institut de Myologie, 47-83 Boulevard de l'Hôpital 75013 Paris, France
| | - Tanya Stojkovic
- Hôpital Pitié-Salpêtrière, Institut de Myologie, 47-83 Boulevard de l'Hôpital 75013 Paris, France
| | - Anthony Behin
- Hôpital Pitié-Salpêtrière, Institut de Myologie, 47-83 Boulevard de l'Hôpital 75013 Paris, France
| | - Philippe Thoumie
- Hôpital Rothschild, Service de Reeducation Neuro-orthopédique, 5 Rue Santerre 75012 Paris, France
| |
Collapse
|
11
|
Haynes P, Kernan K, Zhou SL, Miller DG. Expression patterns of FSHD-causing DUX4 and myogenic transcription factors PAX3 and PAX7 are spatially distinct in differentiating human stem cell cultures. Skelet Muscle 2017. [PMID: 28637492 PMCID: PMC5480156 DOI: 10.1186/s13395-017-0130-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD) is most commonly inherited in an autosomal dominant pattern and caused by the abnormal expression of DUX4 in skeletal muscle. The DUX4 transcription factor has DNA binding domains similar to several paired class homeotic transcription factors, but only myogenic factors PAX3 and PAX7 rescue cell viability when co-expressed with DUX4 in mouse myoblasts. This observation suggests competition for DNA binding sites in satellite cells might limit muscle repair and may be one aspect of DUX4-associated myotoxicity. The competition hypothesis requires that DUX4 and PAX3/7 be expressed in the same cells at some point during development or in adult tissues. We modeled myogenesis using human isogenic iPS and ES cells and examined expression patterns of DUX4, PAX3, and PAX7 to determine if conditions that promote PAX3 and PAX7 expression in cell culture also promote DUX4 expression in the same cells. Methods Isogenic iPSCs were generated from human fibroblasts of two FSHD-affected individuals with somatic mosaicism. Clones containing the shortened FSHD-causing D4Z4 array or the long non-pathogenic array were isolated from the same individuals. We also examined myogenesis in commercially available hES cell lines derived from FSHD-affected and non-affected embryos. DUX4, PAX3, and PAX7 messenger RNAs (mRNAs) were quantified during a 40-day differentiation protocol, and antibodies were used to identify cell types in different stages of differentiation to determine if DUX4 and PAX3 or PAX7 are present in the same cells. Results Human iPS and ES cells differentiated into skeletal myocytes as evidenced by Titin positive multinucleated fibers appearing toward the end of a 40-day differentiation protocol. PAX3 and PAX7 were expressed at similar times during differentiation, and DUX4 positive nuclei were seen at terminal stages of differentiation in cells containing the short D4Z4 arrays. Nuclei that expressed both DUX4 and PAX3, or DUX4 and PAX7 were not observed after examining immunostained nuclei at five different time points during myogenic differentiation of pluripotent cells. Conclusions We conclude that DUX4, PAX3, and PAX7 have distinct expression patterns during myogenic differentiation of stem cells. Our findings are consistent with the hypothesis that muscle damage in FSHD is due to DUX4-mediated toxicity causing destruction of terminally differentiated myofibers. While these studies examine DUX4, PAX3, and PAX7 expression patterns during stem cell myogenesis, they should not be generalized to tissue repair in adult muscle tissue. Electronic supplementary material The online version of this article (doi:10.1186/s13395-017-0130-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Premi Haynes
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Campus Box 358056, 850 Republican Street, Room N416, Seattle, WA, 98109, USA
| | - Kelly Kernan
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Campus Box 358056, 850 Republican Street, Room N416, Seattle, WA, 98109, USA
| | - Suk-Lin Zhou
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Campus Box 358056, 850 Republican Street, Room N416, Seattle, WA, 98109, USA
| | - Daniel G Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Campus Box 358056, 850 Republican Street, Room N416, Seattle, WA, 98109, USA.
| |
Collapse
|