1
|
Li Q, Wang Q, Jin X, Chen Z, Xiong C, Li P, Liu Q, Huang W. Characterization and comparative analysis of six complete mitochondrial genomes from ectomycorrhizal fungi of the Lactarius genus and phylogenetic analysis of the Agaricomycetes. Int J Biol Macromol 2019; 121:249-260. [DOI: 10.1016/j.ijbiomac.2018.10.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023]
|
2
|
Li Q, Wang Q, Jin X, Chen Z, Xiong C, Li P, Zhao J, Huang W. Characterization and comparison of the mitochondrial genomes from two Lyophyllum fungal species and insights into phylogeny of Agaricomycetes. Int J Biol Macromol 2019; 121:364-372. [DOI: 10.1016/j.ijbiomac.2018.10.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/12/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
|
3
|
Li Q, Wang Q, Chen C, Jin X, Chen Z, Xiong C, Li P, Zhao J, Huang W. Characterization and comparative mitogenomic analysis of six newly sequenced mitochondrial genomes from ectomycorrhizal fungi (Russula) and phylogenetic analysis of the Agaricomycetes. Int J Biol Macromol 2018; 119:792-802. [PMID: 30076929 DOI: 10.1016/j.ijbiomac.2018.07.197] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
Abstract
In this study, the mitochondrial genomes of six Russula species were sequenced using next generation sequencing. The six mitogenomes were all composed of circular DNA molecules, with lengths ranging from 40,961 bp to 69,423 bp. The length and number of protein coding genes (PCGs), GC content, AT skew, and GC skew varied among the six mitogenomes. The increased number and total size of introns likely contributed to the size expansion of mitogenomes in some Russula species. Gene synteny analysis revealed some gene rearrangements among the six mitochondrial genomes. The nad4L gene had the lowest K2P genetic distance of the 15 core PCGs among the six Russula species, indicating that this gene was highly conserved. The Ka/Ks values for all 15 core PCGs were <1, suggesting that they were all subject to purifying selection. Phylogenetic analyses based on two gene datasets (15 core PCGs, and 15 core PCGs + rnl + rns) recovered identical and well-supported trees. In addition, cox1 was identified as a potential single-gene molecular marker for the phylogenetic analysis of relationships among Agaricomycetes species. This study provides the first report of mitogenomes from the Russulaceae family and facilitates the investigation of population genetics and evolution of other ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Qiangfeng Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Zuqin Chen
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Jian Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China.
| |
Collapse
|
4
|
Guha TK, Wai A, Hausner G. Programmable Genome Editing Tools and their Regulation for Efficient Genome Engineering. Comput Struct Biotechnol J 2017; 15:146-160. [PMID: 28179977 PMCID: PMC5279741 DOI: 10.1016/j.csbj.2016.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 12/26/2022] Open
Abstract
Targeted genome editing has become a powerful genetic tool for studying gene function or for modifying genomes by correcting defective genes or introducing genes. A variety of reagents have been developed in recent years that can generate targeted double-stranded DNA cuts which can be repaired by the error-prone, non-homologous end joining repair system or via the homologous recombination-based double-strand break repair pathway provided a suitable template is available. These genome editing reagents require components for recognizing a specific DNA target site and for DNA-cleavage that generates the double-stranded break. In order to reduce potential toxic effects of genome editing reagents, it might be desirable to control the in vitro or in vivo activity of these reagents by incorporating regulatory switches that can reduce off-target activities and/or allow for these reagents to be turned on or off. This review will outline the various genome editing tools that are currently available and describe the strategies that have so far been employed for regulating these editing reagents. In addition, this review will examine potential regulatory switches/strategies that can be employed in the future in order to provide temporal control for these reagents.
Collapse
Affiliation(s)
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| |
Collapse
|