1
|
Fischer MA, Mustafa AHM, Hausmann K, Ashry R, Kansy AG, Liebl MC, Brachetti C, Piée-Staffa A, Zessin M, Ibrahim HS, Hofmann TG, Schutkowski M, Sippl W, Krämer OH. Novel hydroxamic acid derivative induces apoptosis and constrains autophagy in leukemic cells. J Adv Res 2024; 60:201-214. [PMID: 37467961 PMCID: PMC11156613 DOI: 10.1016/j.jare.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION Posttranslational modification of proteins by reversible acetylation regulates key biological processes. Histone deacetylases (HDACs) catalyze protein deacetylation and are frequently dysregulated in tumors. This has spurred the development of HDAC inhibitors (HDACi). Such epigenetic drugs modulate protein acetylation, eliminate tumor cells, and are approved for the treatment of blood cancers. OBJECTIVES We aimed to identify novel, nanomolar HDACi with increased potency over existing agents and selectivity for the cancer-relevant class I HDACs (HDAC1,-2,-3,-8). Moreover, we wanted to define how such drugs control the apoptosis-autophagy interplay. As test systems, we used human leukemic cells and embryonic kidney-derived cells. METHODS We synthesized novel pyrimidine-hydroxamic acid HDACi (KH9/KH16/KH29) and performed in vitro activity assays and molecular modeling of their direct binding to HDACs. We analyzed how these HDACi affect leukemic cell fate, acetylation, and protein expression with flow cytometry and immunoblot. The publicly available DepMap database of CRISPR-Cas9 screenings was used to determine sensitivity factors across human leukemic cells. RESULTS Novel HDACi show nanomolar activity against class I HDACs. These agents are superior to the clinically used hydroxamic acid HDACi SAHA (vorinostat). Within the KH-series of compounds, KH16 (yanostat) is the most effective inhibitor of HDAC3 (IC50 = 6 nM) and the most potent inducer of apoptosis (IC50 = 110 nM; p < 0.0001) in leukemic cells. KH16 though spares embryonic kidney-derived cells. Global data analyses of knockout screenings verify that HDAC3 is a dependency factor in 115 human blood cancer cells of different lineages, independent of mutations in the tumor suppressor p53. KH16 alters pro- and anti-apoptotic protein expression, stalls cell cycle progression, and induces caspase-dependent processing of the autophagy proteins ULK1 and p62. CONCLUSION These data reveal that HDACs are required to stabilize autophagy proteins through suppression of apoptosis in leukemic cells. HDAC3 appears as a valid anti-cancer target for pharmacological intervention.
Collapse
Affiliation(s)
- Marten A Fischer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | - Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt.
| | - Kristin Hausmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Ramy Ashry
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Egypt.
| | - Anita G Kansy
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | - Magdalena C Liebl
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | | | - Andrea Piée-Staffa
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | - Matthes Zessin
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Hany S Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt.
| | - Thomas G Hofmann
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
2
|
Kiweler N, Schwarz H, Nguyen A, Matschos S, Mullins C, Piée-Staffa A, Brachetti C, Roos WP, Schneider G, Linnebacher M, Brenner W, Krämer OH. The epigenetic modifier HDAC2 and the checkpoint kinase ATM determine the responses of microsatellite instable colorectal cancer cells to 5-fluorouracil. Cell Biol Toxicol 2023; 39:2401-2419. [PMID: 35608750 PMCID: PMC10547618 DOI: 10.1007/s10565-022-09731-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
The epigenetic modifier histone deacetylase-2 (HDAC2) is frequently dysregulated in colon cancer cells. Microsatellite instability (MSI), an unfaithful replication of DNA at nucleotide repeats, occurs in about 15% of human colon tumors. MSI promotes a genetic frameshift and consequently a loss of HDAC2 in up to 43% of these tumors. We show that long-term and short-term cultures of colorectal cancers with MSI contain subpopulations of cells lacking HDAC2. These can be isolated as single cell-derived, proliferating populations. Xenografted patient-derived colon cancer tissues with MSI also show variable patterns of HDAC2 expression in mice. HDAC2-positive and HDAC2-negative RKO cells respond similarly to pharmacological inhibitors of the class I HDACs HDAC1/HDAC2/HDAC3. In contrast to this similarity, HDAC2-negative and HDAC2-positive RKO cells undergo differential cell cycle arrest and apoptosis induction in response to the frequently used chemotherapeutic 5-fluorouracil, which becomes incorporated into and damages RNA and DNA. 5-fluorouracil causes an enrichment of HDAC2-negative RKO cells in vitro and in a subset of primary colorectal tumors in mice. 5-fluorouracil induces the phosphorylation of KAP1, a target of the checkpoint kinase ataxia-telangiectasia mutated (ATM), stronger in HDAC2-negative cells than in their HDAC2-positive counterparts. Pharmacological inhibition of ATM sensitizes RKO cells to cytotoxic effects of 5-fluorouracil. These findings demonstrate that HDAC2 and ATM modulate the responses of colorectal cancer cells towards 5-FU.
Collapse
Affiliation(s)
- Nicole Kiweler
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
- Present Address: Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Helena Schwarz
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Alexandra Nguyen
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Stephanie Matschos
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Christina Mullins
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Andrea Piée-Staffa
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Christina Brachetti
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Wynand P. Roos
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Günter Schneider
- Klinikum Rechts Der Isar, Medical Clinic and Polyclinic II, Technical University Munich, 81675 Munich, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Walburgis Brenner
- Clinic for Obstetrics and Women’s Health, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Pons M, Conradi R, Brenner W, Krämer OH. Human Platelet Lysate as Valid Cell Growth Additive to Assess Protein Acetylation. Methods Mol Biol 2023; 2589:87-94. [PMID: 36255619 DOI: 10.1007/978-1-0716-2788-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Experiments with cell cultures are an alternative to animal experiments. One problem, however, is the ethically questionable use of fetal calf serum (FCS, which some authors refer to as fetal bovine serum, FBS). Furthermore, FCS is an undefined variable mixture and a possible source of contaminations. We reported that lysine acetylation was very similar in cells in growth media containing FCS or human platelet lysate (hPL). Here, we explain in detail how to generate and use hPL as a cost-effective substitute for FCS in experiments with mammalian cell cultures. A large panel of cells and conditions can be cultured and tested in media with hPL.
Collapse
Affiliation(s)
- Miriam Pons
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Roland Conradi
- Transfusion Center, University Medical Center, Mainz, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Beyer M, Krämer OH. RNA interference protocol to silence oncogenic drivers in leukemia cell lines. STAR Protoc 2022; 3:101512. [PMID: 35779262 PMCID: PMC9254495 DOI: 10.1016/j.xpro.2022.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 11/03/2022] Open
Abstract
Genetic silencing of leukemia-associated proteins with small interfering RNAs (siRNAs) is a straightforward way to delineate their functions. It can be very challenging to deliver siRNAs to leukemia-derived cells with high transfection efficiency and without compromising their viability. This protocol describes an efficient approach to silence oncogenic feline McDonough sarcoma (FMS)-like tyrosine kinase-3 in leukemia cells using siRNAs that are delivered by electroporation. The protocol maintains high cell viability and is generally useful to decrease RNAs encoding proteins of interest. For complete details on the use and execution of this protocol, please refer to Beyer et al. (2022). Transient knockdown of proteins in leukemic cells with survival rates around 80% Technique demonstrated through genetic attenuation of the leukemogenic kinase FLT3-ITD Applicability for various cell systems and RNAs/proteins of interest Genetic reduction can be used as a comparison for inhibitor studies
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
5
|
Zeyen P, Zeyn Y, Herp D, Mahmoudi F, Yesiloglu TZ, Erdmann F, Schmidt M, Robaa D, Romier C, Ridinger J, Herbst-Gervasoni CJ, Christianson DW, Oehme I, Jung M, Krämer OH, Sippl W. Identification of histone deacetylase 10 (HDAC10) inhibitors that modulate autophagy in transformed cells. Eur J Med Chem 2022; 234:114272. [PMID: 35306288 PMCID: PMC9007901 DOI: 10.1016/j.ejmech.2022.114272] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023]
Abstract
Histone deacetylases (HDACs) are a family of 18 epigenetic modifiers that fall into 4 classes. Histone deacetylase inhibitors (HDACi) are valid tools to assess HDAC functions. HDAC6 and HDAC10 belong to the class IIb subgroup of the HDAC family. The targets and biological functions of HDAC10 are ill-defined. This lack of knowledge is due to a lack of specific and potent HDAC10 inhibitors with cellular activity. Here, we have synthesized and characterized piperidine-4-acrylhydroxamates as potent and highly selective inhibitors of HDAC10. This was achieved by targeting the acidic gatekeeper residue Glu274 of HDAC10 with a basic piperidine moiety that mimics the interaction of the polyamine substrate of HDAC10. We have confirmed the binding modes of selected inhibitors using X-ray crystallography. Promising candidates were selected based on their specificity by in vitro profiling using recombinant HDACs. The most promising HDAC10 inhibitors 10c and 13b were tested for specificity in acute myeloid leukemia (AML) cells with the FLT3-ITD oncogene. By immunoblot experiments we assessed the hyperacetylation of histones and tubulin-α, which are class I and HDAC6 substrates, respectively. As validated test for HDAC10 inhibition we used flow cytometry assessing autolysosome formation in neuroblastoma and AML cells. We demonstrate that 10c and 13b inhibit HDAC10 with high specificity over HDAC6 and with no significant impact on class I HDACs. The accumulation of autolysosomes is not a consequence of apoptosis and 10c and 13b are not toxic for normal human kidney cells. These data show that 10c and 13b are nanomolar inhibitors of HDAC10 with high specificity. Thus, our new HDAC10 inhibitors are tools to identify the downstream targets and functions of HDAC10 in cells.
Collapse
|
6
|
Nawar N, Bukhari S, Adile AA, Suk Y, Manaswiyoungkul P, Toutah K, Olaoye OO, Raouf YS, Sedighi A, Garcha HK, Hassan MM, Gwynne W, Israelian J, Radu TB, Geletu M, Abdeldayem A, Gawel JM, Cabral AD, Venugopal C, de Araujo ED, Singh SK, Gunning PT. Discovery of HDAC6-Selective Inhibitor NN-390 with in Vitro Efficacy in Group 3 Medulloblastoma. J Med Chem 2022; 65:3193-3217. [PMID: 35119267 DOI: 10.1021/acs.jmedchem.1c01585] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histone deacetylase 6 (HDAC6) has been targeted in clinical studies for anticancer effects due to its role in oncogenic transformation and metastasis. Through a second-generation structure-activity relationship (SAR) study, the design, and biological evaluation of the selective HDAC6 inhibitor NN-390 is reported. With nanomolar HDAC6 potency, >200-550-fold selectivity for HDAC6 in analogous HDAC isoform functional assays, potent intracellular target engagement, and robust cellular efficacy in cancer cell lines, NN-390 is the first HDAC6-selective inhibitor to show therapeutic potential in metastatic Group 3 medulloblastoma (MB), an aggressive pediatric brain tumor often associated with leptomeningeal metastases and therapy resistance. MB stem cells contribute to these patients' poor clinical outcomes. NN-390 selectively targets this cell population with a 44.3-fold therapeutic margin between patient-derived Group 3 MB cells in comparison to healthy neural stem cells. NN-390 demonstrated a 45-fold increased potency over HDAC6-selective clinical candidate citarinostat. In summary, HDAC6-selective molecules demonstrated in vitro therapeutic potential against Group 3 MB.
Collapse
Affiliation(s)
- Nabanita Nawar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Shazreh Bukhari
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ashley A Adile
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Yujin Suk
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Krimo Toutah
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Olasunkanmi O Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yasir S Raouf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abootaleb Sedighi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Harsimran Kaur Garcha
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - William Gwynne
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Tudor B Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mulu Geletu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Ayah Abdeldayem
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Justyna M Gawel
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Aaron D Cabral
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Chitra Venugopal
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
7
|
Beyer M, Henninger SJ, Haehnel PS, Mustafa AHM, Gurdal E, Schubert B, Christmann M, Sellmer A, Mahboobi S, Drube S, Sippl W, Kindler T, Krämer OH. Identification of a highly efficient dual type I/II FMS-like tyrosine kinase inhibitor that disrupts the growth of leukemic cells. Cell Chem Biol 2021; 29:398-411.e4. [PMID: 34762849 DOI: 10.1016/j.chembiol.2021.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022]
Abstract
Internal tandem duplications (ITDs) in the FMS-like tyrosine kinase-3 (FLT3) are causally linked to acute myeloid leukemia (AML) with poor prognosis. Available FLT3 inhibitors (FLT3i) preferentially target inactive or active conformations of FLT3. Moreover, they co-target kinases for normal hematopoiesis, are vulnerable to therapy-associated tyrosine kinase domain (TKD) FLT3 mutants, or lack low nanomolar activity. We show that the tyrosine kinase inhibitor marbotinib suppresses the phosphorylation of FLT3-ITD and the growth of permanent and primary AML cells with FLT3-ITD. This also applies to leukemic cells carrying FLT3-ITD/TKD mutants that confer resistance to clinically used FLT3i. Marbotinib shows high selectivity for FLT3 and alters signaling, reminiscent of genetic elimination of FLT3-ITD. Molecular docking shows that marbotinib fits in opposite orientations into inactive and active conformations of FLT3. The water-soluble marbotinib-carbamate significantly prolongs survival of mice with FLT3-driven leukemia. Marbotinib is a nanomolar next-generation FLT3i that represents a hybrid inhibitory principle.
Collapse
Affiliation(s)
- Mandy Beyer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Sven J Henninger
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Patricia S Haehnel
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center, 55131 Mainz, Germany; University Cancer Center, University Medical Center, Mainz, Germany; German Consortia for Translational Cancer Research, 55131 Mainz, Germany
| | - Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Ece Gurdal
- Institute for Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Bastian Schubert
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Markus Christmann
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93053 Regensburg, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93053 Regensburg, Germany
| | - Sebastian Drube
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Wolfgang Sippl
- Institute for Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Thomas Kindler
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center, 55131 Mainz, Germany; University Cancer Center, University Medical Center, Mainz, Germany; German Consortia for Translational Cancer Research, 55131 Mainz, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
8
|
Wachholz V, Mustafa AHM, Zeyn Y, Henninger SJ, Beyer M, Dzulko M, Piée-Staffa A, Brachetti C, Haehnel PS, Sellmer A, Mahboobi S, Kindler T, Brenner W, Nikolova T, Krämer OH. Inhibitors of class I HDACs and of FLT3 combine synergistically against leukemia cells with mutant FLT3. Arch Toxicol 2021; 96:177-193. [PMID: 34665271 PMCID: PMC8748367 DOI: 10.1007/s00204-021-03174-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) with mutations in the FMS-like tyrosine kinase (FLT3) is a clinically unresolved problem. AML cells frequently have a dysregulated expression and activity of epigenetic modulators of the histone deacetylase (HDAC) family. Therefore, we tested whether a combined inhibition of mutant FLT3 and class I HDACs is effective against AML cells. Low nanomolar doses of the FLT3 inhibitor (FLT3i) AC220 and an inhibition of class I HDACs with nanomolar concentrations of FK228 or micromolar doses of the HDAC3 specific agent RGFP966 synergistically induce apoptosis of AML cells that carry hyperactive FLT3 with an internal tandem duplication (FLT3-ITD). This does not occur in leukemic cells with wild-type FLT3 and without FLT3, suggesting a preferential toxicity of this combination against cells with mutant FLT3. Moreover, nanomolar doses of the new FLT3i marbotinib combine favorably with FK228 against leukemic cells with FLT3-ITD. The combinatorial treatments potentiated their suppressive effects on the tyrosine phosphorylation and stability of FLT3-ITD and its downstream signaling to the kinases ERK1/ERK2 and the inducible transcription factor STAT5. The beneficial pro-apoptotic effects of FLT3i and HDACi against leukemic cells with mutant FLT3 are associated with dose- and drug-dependent alterations of cell cycle distribution and DNA damage. This is linked to a modulation of the tumor-suppressive transcription factor p53 and its target cyclin-dependent kinase inhibitor p21. While HDACi induce p21, AC220 suppresses the expression of p53 and p21. Furthermore, we show that both FLT3-ITD and class I HDAC activity promote the expression of the checkpoint kinases CHK1 and WEE1, thymidylate synthase, and the DNA repair protein RAD51 in leukemic cells. A genetic depletion of HDAC3 attenuates the expression of such proteins. Thus, class I HDACs and hyperactive FLT3 appear to be valid targets in AML cells with mutant FLT3.
Collapse
Affiliation(s)
- Vanessa Wachholz
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Yanira Zeyn
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven J Henninger
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mandy Beyer
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melanie Dzulko
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrea Piée-Staffa
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christina Brachetti
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Patricia S Haehnel
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,German Consortia for Translational Cancer Research, Mainz, Germany
| | - Andreas Sellmer
- Faculty of Chemistry and Pharmacy, Institute of Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Siavosh Mahboobi
- Faculty of Chemistry and Pharmacy, Institute of Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Thomas Kindler
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,German Consortia for Translational Cancer Research, Mainz, Germany
| | - Walburgis Brenner
- Clinic for Obstetrics and Women's Health, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Teodora Nikolova
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
9
|
Nguyen A, Dzulko M, Murr J, Yen Y, Schneider G, Krämer OH. Class 1 Histone Deacetylases and Ataxia-Telangiectasia Mutated Kinase Control the Survival of Murine Pancreatic Cancer Cells upon dNTP Depletion. Cells 2021; 10:2520. [PMID: 34685500 PMCID: PMC8534202 DOI: 10.3390/cells10102520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with a dismal prognosis. Here, we show how an inhibition of de novo dNTP synthesis by the ribonucleotide reductase (RNR) inhibitor hydroxyurea and an inhibition of epigenetic modifiers of the histone deacetylase (HDAC) family affect short-term cultured primary murine PDAC cells. We used clinically relevant doses of hydroxyurea and the class 1 HDAC inhibitor entinostat. We analyzed the cells by flow cytometry and immunoblot. Regarding the induction of apoptosis and DNA replication stress, hydroxyurea and the novel RNR inhibitor COH29 are superior to the topoisomerase-1 inhibitor irinotecan which is used to treat PDAC. Entinostat promotes the induction of DNA replication stress by hydroxyurea. This is associated with an increase in the PP2A subunit PR130/PPP2R3A and a reduction of the ribonucleotide reductase subunit RRM2 and the DNA repair protein RAD51. We further show that class 1 HDAC activity promotes the hydroxyurea-induced activation of the checkpoint kinase ataxia-telangiectasia mutated (ATM). Unlike in other cell systems, ATM is pro-apoptotic in hydroxyurea-treated murine PDAC cells. These data reveal novel insights into a cytotoxic, ATM-regulated, and HDAC-dependent replication stress program in PDAC cells.
Collapse
Affiliation(s)
- Alexandra Nguyen
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany; (A.N.); (M.D.)
| | - Melanie Dzulko
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany; (A.N.); (M.D.)
| | - Janine Murr
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, 81675 München, Germany; (J.M.); (G.S.)
| | - Yun Yen
- Ph.D. Program for Cancer Biology and Drug Discovery, Taipei Medical University, 250 Wu Hsing Street, Taipei 110, Taiwan;
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, 81675 München, Germany; (J.M.); (G.S.)
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany; (A.N.); (M.D.)
| |
Collapse
|
10
|
Impact of the STAT1 N-terminal domain for fibrosarcoma cell responses to ɣ-irradiation. EXPERIMENTAL RESULTS 2020. [DOI: 10.1017/exp.2020.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractType I/II interferons (IFNα,β/IFNɣ) are cytokines that activate signal-transducer-and-activator-of-transcription-1 (STAT1). The STAT1 N-terminal domain (NTD) mediates dimerization and cooperative DNA-binding. The STAT1 DNA-binding domain (DBD) confers sequence-specific DNA-recognition. STAT1 has been connected to growth inhibition, replication stress and DNA-damage. We investigated how STAT1 and NTD/DBD mutants thereof affect fibrosarcoma cells. STAT1 and indicated mutants do not affect proliferation of resting and IFNα-treated cells as well as checkpoint kinase signaling, and phosphorylation of the tumor-suppressive transcription factor p53 ensuing ɣ-irradiation. Of the STAT1 reconstituted U3A cells those with STAT1 NTD mutants accumulate the highest levels of the replication stress/DNA-damage marker S139-phosphorylated histone H2AX (ɣH2AX). This is similarly seen with a STAT1 NTD/DBD double mutant, indicating transcription-independent effects. Furthermore, U3A cells with STAT1 NTD mutants are most susceptible to apoptotic DNA fragmentation and cleavage of the DNA repair protein PARP1. These data provide novel insights into the relevance of the STAT1 NTD.
Collapse
|
11
|
HDAC3 Activity is Essential for Human Leukemic Cell Growth and the Expression of β-catenin, MYC, and WT1. Cancers (Basel) 2019; 11:cancers11101436. [PMID: 31561534 PMCID: PMC6826998 DOI: 10.3390/cancers11101436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Therapy of acute myeloid leukemia (AML) is unsatisfactory. Histone deacetylase inhibitors (HDACi) are active against leukemic cells in vitro and in vivo. Clinical data suggest further testing of such epigenetic drugs and to identify mechanisms and markers for their efficacy. Primary and permanent AML cells were screened for viability, replication stress/DNA damage, and regrowth capacities after single exposures to the clinically used pan-HDACi panobinostat (LBH589), the class I HDACi entinostat/romidepsin (MS-275/FK228), the HDAC3 inhibitor RGFP966, the HDAC6 inhibitor marbostat-100, the non-steroidal anti-inflammatory drug (NSAID) indomethacin, and the replication stress inducer hydroxyurea (HU). Immunoblotting was used to test if HDACi modulate the leukemia-associated transcription factors β-catenin, Wilms tumor (WT1), and myelocytomatosis oncogene (MYC). RNAi was used to delineate how these factors interact. We show that LBH589, MS-275, FK228, RGFP966, and HU induce apoptosis, replication stress/DNA damage, and apoptotic fragmentation of β-catenin. Indomethacin destabilizes β-catenin and potentiates anti-proliferative effects of HDACi. HDACi attenuate WT1 and MYC caspase-dependently and -independently. Genetic experiments reveal a cross-regulation between MYC and WT1 and a regulation of β-catenin by WT1. In conclusion, reduced levels of β-catenin, MYC, and WT1 are molecular markers for the efficacy of HDACi. HDAC3 inhibition induces apoptosis and disrupts tumor-associated protein expression.
Collapse
|
12
|
Moujaber O, Fishbein F, Omran N, Liang Y, Colmegna I, Presley JF, Stochaj U. Cellular senescence is associated with reorganization of the microtubule cytoskeleton. Cell Mol Life Sci 2019; 76:1169-1183. [PMID: 30599068 PMCID: PMC11105446 DOI: 10.1007/s00018-018-2999-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/12/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Senescent cells undergo structural and functional changes that affect essentially every aspect of cell physiology. To date, the impact of senescence on the cytoskeleton is poorly understood. This study evaluated the cytoskeleton in two independent cellular models of kidney epithelium senescence. Our work identified multiple senescence-related alterations that impact microtubules and filamentous actin during interphase. Both filamentous systems reorganized profoundly when cells became senescent. As such, microtubule stability increased during senescence, making these filaments more resistant to disassembly in the cold or by nocodazole. Microtubule stabilization was accompanied by enhanced α-tubulin acetylation on lysine 40 and the depletion of HDAC6, the major deacetylase for α-tubulin lysine 40. Rho-associated kinase Rock1 is an upstream regulator that modulates key properties of the cytoplasmic cytoskeleton. Our research shows that Rock1 concentrations were reduced significantly in senescent cells, and we revealed a mechanistic link between microtubule stabilization and Rock1 depletion. Thus, Rock1 overexpression partially restored the cold sensitivity of microtubules in cells undergoing senescence. Additional components relevant to microtubules were affected by senescence. Specifically, we uncovered the senescence-related loss of the microtubule nucleating protein γ-tubulin and aberrant formation of γ-tubulin foci. Concomitant with the alterations of microtubule and actin filaments, senescent cells displayed functional changes. In particular, cell migration was impaired significantly in senescent cells. Taken together, our study identified new senescence-associated deficiencies of the microtubule and actin cytoskeleton, provided insights into the underlying molecular mechanisms and demonstrated functional consequences that are important to the physiology and function of renal epithelial cells.
Collapse
Affiliation(s)
- Ossama Moujaber
- Department of Physiology, McGill University, Montreal, Canada
| | | | - Nawal Omran
- Department of Physiology, McGill University, Montreal, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, Canada
| | - Inés Colmegna
- Department of Rheumatology, McGill University, Montreal, Canada
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Canada.
| |
Collapse
|
13
|
Rauch A, Carlstedt A, Emmerich C, Mustafa AHM, Göder A, Knauer SK, Linnebacher M, Heinzel T, Krämer OH. Survivin antagonizes chemotherapy-induced cell death of colorectal cancer cells. Oncotarget 2018; 9:27835-27850. [PMID: 29963241 PMCID: PMC6021236 DOI: 10.18632/oncotarget.25600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
Irinotecan (CPT-11) and oxaliplatin (L-OHP) are among the most frequently used drugs against colorectal tumors. Therefore, it is important to define the molecular mechanisms that these agents modulate in colon cancer cells. Here we demonstrate that CPT-11 stalls such cells in the G2/M phase of the cell cycle, induces an accumulation of the tumor suppressor p53, the replicative stress/DNA damage marker γH2AX, phosphorylation of the checkpoint kinases ATM and ATR, and an ATR-dependent accumulation of the pro-survival molecule survivin. L-OHP reduces the number of cells in S-phase, stalls cell cycle progression, transiently triggers an accumulation of low levels of γH2AX and phosphorylated checkpoint kinases, and L-OHP suppresses survivin expression at the mRNA and protein levels. Compared to CPT-11, L-OHP is a stronger inducer of caspases and p53-dependent apoptosis. Overexpression and RNAi against survivin reveal that this factor critically antagonizes caspase-dependent apoptosis in cells treated with CPT-11 and L-OHP. We additionally show that L-OHP suppresses survivin through p53 and its downstream target p21, which stalls cell cycle progression as a cyclin-dependent kinase inhibitor (CDKi). These data shed new light on the regulation of survivin by two clinically significant drugs and its biological and predictive relevance in drug-exposed cancer cells.
Collapse
Affiliation(s)
- Anke Rauch
- Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Annemarie Carlstedt
- Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University Jena, 07745 Jena, Germany.,Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Claudia Emmerich
- Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Anja Göder
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Shirley K Knauer
- Department of Molecular Biology, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45141 Essen, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, 18057 Rostock, Germany
| | - Thorsten Heinzel
- Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
14
|
Kiweler N, Brill B, Wirth M, Breuksch I, Laguna T, Dietrich C, Strand S, Schneider G, Groner B, Butter F, Heinzel T, Brenner W, Krämer OH. The histone deacetylases HDAC1 and HDAC2 are required for the growth and survival of renal carcinoma cells. Arch Toxicol 2018; 92:2227-2243. [DOI: 10.1007/s00204-018-2229-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
|
15
|
Loss of Wilms tumor 1 protein is a marker for apoptosis in response to replicative stress in leukemic cells. Arch Toxicol 2018; 92:2119-2135. [PMID: 29589053 DOI: 10.1007/s00204-018-2202-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
A remaining expression of the transcription factor Wilms tumor 1 (WT1) after cytotoxic chemotherapy indicates remaining leukemic clones in patients. We determined the regulation and relevance of WT1 in leukemic cells exposed to replicative stress and DNA damage. To induce these conditions, we used the clinically relevant chemotherapeutics hydroxyurea and doxorubicin. We additionally treated cells with the pro-apoptotic kinase inhibitor staurosporine. Our data show that these agents promote apoptosis to a variable extent in a panel of 12 leukemic cell lines and that caspases cleave WT1 during apoptosis. A chemical inhibition of caspases as well as an overexpression of mitochondrial, anti-apoptotic BCL2 family proteins significantly reduces the processing of WT1 and cell death in hydroxyurea-sensitive acute promyelocytic leukemia cells. Although the reduction of WT1 correlates with the pharmacological efficiency of chemotherapeutics in various leukemic cells, the elimination of WT1 by different strategies of RNA interference (RNAi) does not lead to changes in the cell cycle of chronic myeloid leukemia K562 cells. RNAi against WT1 does also not increase the extent of apoptosis and the accumulation of γH2AX in K562 cells exposed to hydroxyurea. Likewise, a targeted genetic depletion of WT1 in primary oviduct cells does not increase the levels of γH2AX. Our findings position WT1 as a downstream target of the apoptotic process that occurs in response to cytotoxic forms of replicative stress and DNA damage.
Collapse
|
16
|
Mahendrarajah N, Borisova ME, Reichardt S, Godmann M, Sellmer A, Mahboobi S, Haitel A, Schmid K, Kenner L, Heinzel T, Beli P, Krämer OH. HSP90 is necessary for the ACK1-dependent phosphorylation of STAT1 and STAT3. Cell Signal 2017; 39:9-17. [DOI: 10.1016/j.cellsig.2017.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/07/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
|
17
|
Schäfer C, Göder A, Beyer M, Kiweler N, Mahendrarajah N, Rauch A, Nikolova T, Stojanovic N, Wieczorek M, Reich TR, Tomicic MT, Linnebacher M, Sonnemann J, Dietrich S, Sellmer A, Mahboobi S, Heinzel T, Schneider G, Krämer OH. Class I histone deacetylases regulate p53/NF-κB crosstalk in cancer cells. Cell Signal 2016; 29:218-225. [PMID: 27838375 DOI: 10.1016/j.cellsig.2016.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 02/09/2023]
Abstract
The transcription factors NF-κB and p53 as well as their crosstalk determine the fate of tumor cells upon therapeutic interventions. Replicative stress and cytokines promote signaling cascades that lead to the co-regulation of p53 and NF-κB. Consequently, nuclear p53/NF-κB signaling complexes activate NF-κB-dependent survival genes. The 18 histone deacetylases (HDACs) are epigenetic modulators that fall into four classes (I-IV). Inhibitors of histone deacetylases (HDACi) become increasingly appreciated as anti-cancer agents. Based on their effects on p53 and NF-κB, we addressed whether clinically relevant HDACi affect the NF-κB/p53 crosstalk. The chemotherapeutics hydroxyurea, etoposide, and fludarabine halt cell cycle progression, induce DNA damage, and lead to DNA fragmentation. These agents co-induce p53 and NF-κB-dependent gene expression in cell lines from breast and colon cancer and in primary chronic lymphatic leukemia (CLL) cells. Using specific HDACi, we find that the class I subgroup of HDACs, but not the class IIb deacetylase HDAC6, are required for the hydroxyurea-induced crosstalk between p53 and NF-κB. HDACi decrease the basal and stress-induced expression of p53 and block NF-κB-regulated gene expression. We further show that class I HDACi induce senescence in pancreatic cancer cells with mutant p53.
Collapse
Affiliation(s)
- Claudia Schäfer
- Friedrich-Schiller-University Jena, Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Anja Göder
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Mandy Beyer
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Nicole Kiweler
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Nisintha Mahendrarajah
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Anke Rauch
- Friedrich-Schiller-University Jena, Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Teodora Nikolova
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Natasa Stojanovic
- Project Group "Personalized Tumor Therapy", Fraunhofer Institute of Toxicology and Experimental Medicine, Am Biopark 9, 93053 Regensburg, Germany
| | - Martin Wieczorek
- Friedrich-Schiller-University Jena, Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Thomas R Reich
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Maja T Tomicic
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Michael Linnebacher
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Jürgen Sonnemann
- Department of Paediatric Haematology and Oncology, Children's Clinic, Jena University Hospital, Kochstraße 2, 07745 Jena, Germany
| | - Sascha Dietrich
- Department of Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Thorsten Heinzel
- Friedrich-Schiller-University Jena, Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Günter Schneider
- Technische Universität München, Klinikum rechts der Isar, II. Medizinische Klinik, Ismaninger Straße 22, 81675 München, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany.
| |
Collapse
|