1
|
Roussel S, Udabe J, Bin Sabri A, Calderón M, Donnelly R. Leveraging novel innovative thermoresponsive polymers in microneedles for targeted intradermal deposition. Int J Pharm 2024; 652:123847. [PMID: 38266945 DOI: 10.1016/j.ijpharm.2024.123847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Microneedles have garnered considerable attention over the years as a versatile pharmaceutical platform that could be leveraged to deliver drugs into and across the skin. In the current work, poly (N-isopropylacrylamide) (PNIPAm) is synthesized and characterized as a novel material for the development of a physiologically responsive microneedle-based drug delivery system. Typically, this polymer transitions reversibly between a swell state at lower temperatures and a more hydrophobic state at higher temperatures, enabling precise drug release. This study demonstrates that dissolving microneedles patches made from PNIPAm, incorporating BIS-PNIPAm, a crosslinked polymer variant, exhibit enhanced mechanical properties, evident from a smaller height reduction in microneedle (∼10 %). Although microneedles using PNIPAm alone were achievable, it displayed poor mechanical strength, requiring the inclusion of additional polymeric excipients like PVA to enhance mechanical properties. In addition, the incorporation of a thermoresponsive polymer did not have a significant (p > 0.05) impact on the insertion properties of the needles as all formulations inserted to a similar depth of 500 µm into ex vivo skin. Furthering this, the needles were loaded with a model payload, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DID) and the deposition of the cargo was monitored via multiphoton microscopy that showed that a deposit is formed at a depth of ≈200 µm. Also, it was revealed that crosslinked-PNIPAm (Bis-PNIPAm) formulations exhibited notable skin accumulationof the dye only after 4 h, independent of the excipient matrix used. This phenomenon was absent in non-crosslinked PNIPAm formulations, indicating a deposit formation in Bis-PNIPAm microneedle formulation. Collectively, this proof-of-concept study has advanced our understanding on the possibility to use PNIPAm for dissolving microneedle fabrication which could be harnessed for the deposition of nanoparticles into the dermis, for extended drug release within the skin.
Collapse
Affiliation(s)
- Sabrina Roussel
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Quebec G1V 4G2, Canada; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jakes Udabe
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia - San Sebastián, Spain
| | - Akmal Bin Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, The University of Nottingham, NG7 2RD, UK
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia - San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ryan Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
2
|
Sastri KT, Gupta NV, M S, Chakraborty S, Kumar H, Chand P, Balamuralidhara V, Gowda D. Nanocarrier facilitated drug delivery to the brain through intranasal route: A promising approach to transcend bio-obstacles and alleviate neurodegenerative conditions. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Viana IMDO, Grenier P, Defrêne J, Barabé F, Lima EM, Bertrand N. Role of the complement cascade in the biological fate of liposomes in rodents. NANOSCALE 2020; 12:18875-18884. [PMID: 32901649 DOI: 10.1039/d0nr04100a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nanomedicines, including liposomes, have been used to improve the clinical efficacy and safety of drugs. In some liposomal formulations, a hydrophilic polymer coating of poly(ethylene glycol) (PEG) is used to increase the circulation time. Understanding the biological mechanisms responsible for the clearance of PEGylated and non-PEGylated nanomedicines is necessary to develop better-performing materials. The purpose of this work is to explore the role of complement in the elimination of intravenously administered liposomes (PEGylated and non-PEGylated) in mice and rats. Here, the complement cascade was depleted by intraperitoneal injections of cobra venom factor (CVF) 12 and 24 hours before the intravenous injection of radiolabeled liposomes. In both mice and rats, non-PEGylated liposomes showed faster elimination than PEGylated liposomes. At a lipid dose of 20 mg kg-1, the abrogation of the complement cascade (in CVF group) did not alter the circulation time of either PEGylated or non-PEGylated liposomes. In contrast, at lower doses (2 mg kg-1), animals treated with CVF had slightly higher levels of circulating liposomes, especially during the 24 hours pharmacokinetic studies. The complement cascade seems to govern the uptake of non-PEGylated liposomes by splenic B cells. Altogether, these results suggest that although PEGylated and non-PEGylated liposomes can activate complement, the impact of this cascade on their circulation time is minor and mostly perceivable at later phases of distribution. This work enlightens biological pathways responsible for in vivo clearance of liposomes and will help in orienting future research in elucidating the nano-bio interface.
Collapse
Affiliation(s)
- Iara Maíra de Oliveira Viana
- Laboratory of Pharmaceutical Technology (FarmaTec), Federal University of Goiás, Goiânia, 74605-220 Goiás, Brazil.
| | | | | | | | | | | |
Collapse
|
4
|
Dikpati A, Mohammadi F, Greffard K, Quéant C, Arnaud P, Bastiat G, Rudkowska I, Bertrand N. Residual Solvents in Nanomedicine and Lipid-Based Drug Delivery Systems: a Case Study to Better Understand Processes. Pharm Res 2020; 37:149. [DOI: 10.1007/s11095-020-02877-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/08/2020] [Indexed: 01/06/2023]
|
5
|
Chotard É, Mohammadi F, Julien P, Berthiaume L, Rudkowska I, Bertrand N. Drinkable lecithin nanovesicles to study the biological effects of individual hydrophobic macronutrients and food preferences. Food Chem 2020; 322:126736. [PMID: 32325363 DOI: 10.1016/j.foodchem.2020.126736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Fundamental nutritional studies on bioactive molecules require minimizing exposure to confounding foreign elements, like solvents. Herein, aqueous formulations of lecithin nanovesicles are proposed to study three individual trans fatty acids relevant to human nutrition: elaidic acid, trans-vaccenic acid and trans-palmitoleic acid. This proof-of-concept study describes the encapsulation of fatty acids, in vivo bioavailability, and the use of nanovesicles in behavioral experiments. The oral bioavailability of the encapsulated molecules and the selective exposure of animals to each trans-fatty acid of interest were confirmed in healthy rats. Behavioral studies also evidenced that nanovesicles can be used to evaluate the palatability of the lipids and investigate food preferences in mice. Altogether this study shows that lecithin nanovesicles offer an elegant tool to efficiently deliver hydrophobic molecules to animal models. This approach paves the way for future studies deconvoluting the nutritional effects of trans-fatty acids.
Collapse
Affiliation(s)
- Élodie Chotard
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada; Endocrinology and Nephrology Unit, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada
| | - Farzad Mohammadi
- Department of Medicine, Faculty of Medicine, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada; Endocrinology and Nephrology Unit, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada
| | - Pierre Julien
- Department of Medicine, Faculty of Medicine, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada; Endocrinology and Nephrology Unit, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada
| | - Line Berthiaume
- Department of Medicine, Faculty of Medicine, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada; Endocrinology and Nephrology Unit, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada
| | - Iwona Rudkowska
- Department of Kinesiology, Faculty of Medicine, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada; Endocrinology and Nephrology Unit, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada.
| | - Nicolas Bertrand
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada; Institute of Nutrition and Functional Foods - INAF, Université Laval, 2440 Hochelaga Blvd, Quebec City G1V 0A6, Canada; Endocrinology and Nephrology Unit, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Québec City G1V 4G2, Canada.
| |
Collapse
|