1
|
Tufiño C, Vanegas M, Velázquez Nevárez R, Villanueva López C, Bobadilla Lugo RA. Divergent impact of gestational diabetes mellitus between the thoracic and abdominal rat aorta: Influence of endothelium and angiotensin II receptors. Eur J Pharmacol 2021; 899:173981. [PMID: 33689706 DOI: 10.1016/j.ejphar.2021.173981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Gestational diabetes mellitus (GDM) affects 5-10% of pregnancies and increases the risk of fetal and maternal adverse outcomes. Interestingly, the vascular response to AngII is decreased by pregnancy while the response is increased by diabetes. It remains unclear how GDM affects vascular tone and how angiotensin II receptors contribute to these changes. In this work, we sought to establish the vascular impact of a hypercaloric diet-induced GDM through changes in AT1 and AT2 receptor's expression. Female rats fed for 7 weeks with standard (SD) or hypercaloric (HD) diet were divided at week 4. Half of the rats of each group were mated to become pregnant and those fed with a HD developed GDM. AngII-induced vasoconstriction was measured in thoracic or abdominal aorta rings using a conventional isolated organ bath and AT1 and AT2 receptors were searched by immunohistochemistry. Experiments where conducted on the pregnant standard diet group (PSD) and the pregnant hypercaloric-gestational diabetes mellitus group (PHD-GDM). Vasoconstriction was reduced in the thoracic aorta (P < 0.05 vs PSD) but increased in the abdominal aorta of PHD-GDM rats (P < 0.05 vs PSD). Blockade of AT2 receptors using PD123319 decreased vasoconstriction, particularly in the abdominal aorta of PHD-GDM animals (P < 0.05 vs PSD). PHD-GDM increased AT1 receptors expression (P < 0.05 vs PSD). Also, PHD-GDM reverted physiologic hypoglycemia and hypotension of healthy pregnancy. Findings provide new insight into the hypercaloric diet induced damage on the vasculature during pregnancy.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin Receptor Antagonists/pharmacology
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/physiopathology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Diabetes, Gestational/metabolism
- Diabetes, Gestational/physiopathology
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Female
- Pregnancy
- Rats, Wistar
- Receptor, Angiotensin, Type 1/agonists
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Signal Transduction
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- Rats
Collapse
Affiliation(s)
- Cecilia Tufiño
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Santo Tomás, México, 11340, D.F, Mexico
| | - Miriam Vanegas
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Santo Tomás, México, 11340, D.F, Mexico
| | - Ruth Velázquez Nevárez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Santo Tomás, México, 11340, D.F, Mexico
| | - Cleva Villanueva López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Santo Tomás, México, 11340, D.F, Mexico
| | - Rosa Amalia Bobadilla Lugo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Santo Tomás, México, 11340, D.F, Mexico.
| |
Collapse
|
2
|
Physiological and Biochemical Vascular Reactivity Parameters of Angiotensin II and the Action of Biased Agonist TRV023. Adv Pharmacol Pharm Sci 2020; 2020:3092721. [PMID: 32259102 PMCID: PMC7094174 DOI: 10.1155/2020/3092721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/24/2019] [Accepted: 01/18/2020] [Indexed: 11/17/2022] Open
Abstract
Vascular reactivity experiments using isolated aortic rings have been widely used as a model for physiological and pharmacological studies since the early sixties. Here, we suggest several parameters that the researcher should pay attention to when investigating angiotensin II in their experimental models. Angiotensin II is one of the active peptides of the renin-angiotensin system and exerts its effect through the AT1 and AT2 receptors. Some studies seek to understand the effects of angiotensin II receptors at the vascular level by using vascular reactivity experiments. However, because of the large number of variations, there are only a handful of reactivity studies that seek to use this method. Thus, the objective of this study was to standardize experimental methods with angiotensin II, through vascular reactivity protocols. For this, variables such as basal tension, concentration interval, single concentration, curve concentration response, and multiple experiments using the same aortic ring were developed using the technique of vascular reactivity in an organ bath. This is the first study that has standardized the vascular reactivity protocol. In addition, we demonstrated the effects of TRV023-biased ligand of the AT1R at vascular sites.
Collapse
|