1
|
Watkins SL. Current Trends and Changes in Use of Membrane Molecular Dynamics Simulations within Academia and the Pharmaceutical Industry. MEMBRANES 2023; 13:148. [PMID: 36837651 PMCID: PMC9961006 DOI: 10.3390/membranes13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
There has been an almost exponential increase in the use of molecular dynamics simulations in basic research and industry over the last 5 years, with almost a doubling in the number of publications each year. Many of these are focused on neurological membranes, and biological membranes in general, applied to the medical industry. A smaller portion have utilized membrane simulations to answer more basic questions related to the function of specific proteins, chemicals or biological processes. This review covers some newer studies, alongside studies from the last two decades, to determine changes in the field. Some of these are basic, while others are more profound, such as multi-component embedded membrane machinery. It is clear that many facets of the discipline remain the same, while the focus on and uses of the technology are broadening in scope and utilization as a general research tool. Analysis of recent literature provides an overview of the current methodologies, covers some of the recent trends or advances and tries to make predictions of the overall path membrane molecular dynamics will follow in the coming years. In general, the overview presented is geared towards the general scientific community, who may wish to introduce the use of these methodologies in light of these changes, making molecular dynamic simulations more feasible for general scientific or medical research.
Collapse
Affiliation(s)
- Stephan L Watkins
- Plant Pathology and CRGB, Oregon State University, 2701 SW Campus Way, Corvallis, OR 97331, USA
| |
Collapse
|
2
|
Gori A, Romanato A, Bergamaschi G, Strada A, Gagni P, Frigerio R, Brambilla D, Vago R, Galbiati S, Picciolini S, Bedoni M, Daaboul GG, Chiari M, Cretich M. Membrane-binding peptides for extracellular vesicles on-chip analysis. J Extracell Vesicles 2020; 9:1751428. [PMID: 32363015 PMCID: PMC7178839 DOI: 10.1080/20013078.2020.1751428] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 12/27/2022] Open
Abstract
Small extracellular vesicles (sEVs) present fairly distinctive lipid membrane features in the extracellular environment. These include high curvature, lipid-packing defects and a relative abundance in lipids such as phosphatidylserine and ceramide. sEV membrane could be then considered as a "universal" marker, alternative or complementary to traditional, characteristic, surface-associated proteins. Here, we introduce the use of membrane-sensing peptides as new, highly efficient ligands to directly integrate sEV capturing and analysis on a microarray platform. Samples were analysed by label-free, single-particle counting and sizing, and by fluorescence co-localisation immune staining with fluorescent anti-CD9/anti-CD63/anti-CD81 antibodies. Peptides performed as selective yet general sEV baits and showed a binding capacity higher than anti-tetraspanins antibodies. Insights into surface chemistry for optimal peptide performances are also discussed, as capturing efficiency is strictly bound to probes surface orientation effects. We anticipate that this new class of ligands, also due to the versatility and limited costs of synthetic peptides, may greatly enrich the molecular toolbox for EV analysis.
Collapse
Affiliation(s)
- Alessandro Gori
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| | - Alessandro Romanato
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| | - Greta Bergamaschi
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| | - Alessandro Strada
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| | - Paola Gagni
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| | - Roberto Frigerio
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| | - Dario Brambilla
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| | - Riccardo Vago
- Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Galbiati
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Picciolini
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Marzia Bedoni
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | | | - Marcella Chiari
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| | - Marina Cretich
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| |
Collapse
|