1
|
Rosati D, Palmieri M, Brunelli G, Morrione A, Iannelli F, Frullanti E, Giordano A. Differential gene expression analysis pipelines and bioinformatic tools for the identification of specific biomarkers: A review. Comput Struct Biotechnol J 2024; 23:1154-1168. [PMID: 38510977 PMCID: PMC10951429 DOI: 10.1016/j.csbj.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
In recent years, the role of bioinformatics and computational biology together with omics techniques and transcriptomics has gained tremendous importance in biomedicine and healthcare, particularly for the identification of biomarkers for precision medicine and drug discovery. Differential gene expression (DGE) analysis is one of the most used techniques for RNA-sequencing (RNA-seq) data analysis. This tool, which is typically used in various RNA-seq data processing applications, allows the identification of differentially expressed genes across two or more sample sets. Functional enrichment analyses can then be performed to annotate and contextualize the resulting gene lists. These studies provide valuable information about disease-causing biological processes and can help in identifying molecular targets for novel therapies. This review focuses on differential gene expression (DGE) analysis pipelines and bioinformatic techniques commonly used to identify specific biomarkers and discuss the advantages and disadvantages of these techniques.
Collapse
Affiliation(s)
- Diletta Rosati
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Cancer Genomics & Systems Biology Lab, Dept. of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
| | - Maria Palmieri
- Cancer Genomics & Systems Biology Lab, Dept. of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
| | - Giulia Brunelli
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Frullanti
- Cancer Genomics & Systems Biology Lab, Dept. of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
2
|
Dong J, Gu W, Yang X, Zeng L, Wang X, Mu J, Wang Y, Li F, Yang M, Yu J. Crosstalk Between Polygonatum kingianum, the miRNA, and Gut Microbiota in the Regulation of Lipid Metabolism. Front Pharmacol 2021; 12:740528. [PMID: 34776961 PMCID: PMC8578870 DOI: 10.3389/fphar.2021.740528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Polygonatum kingianum is a medicinal herb used in various traditional Chinese medicine formulations. The polysaccharide fraction of P. kingianum can reduce insulin resistance and restore the gut microbiota in a rat model of aberrant lipid metabolism by down regulating miR-122. The aim of this study was to further elucidate the effect of P. kingianum on lipid metabolism, and the roles of specific miRNAs and the gut microbiota. Key findings: P. kingianum administration significantly altered the abundance of 29 gut microbes and 27 differentially expressed miRNAs (DEMs). Several aberrantly expressed miRNAs closely related to lipid metabolism were identified, of which some were associated with specific gut microbiota. MiR-484 in particular was identified as the core factor involved in the therapeutic effects of P. kingianum. We hypothesize that the miR-484-Bacteroides/Roseburia axis acts as an important bridge hub that connects the entire miRNA-gut microbiota network. In addition, we observed that Parabacteroides and Bacillus correlated significantly with several miRNAs, including miR-484, miR-122-5p, miR-184 and miR-378b. Summary: P. kingianum alleviates lipid metabolism disorder by targeting the network of key miRNAs and the gut microbiota.
Collapse
Affiliation(s)
- Jincai Dong
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China.,Chenggong Hospital of Kunming Yan'an Hospital, Kunming, China
| | - Wen Gu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Xingxin Yang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Linxi Zeng
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Xi Wang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiankang Mu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Yanfang Wang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Fengjiao Li
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Min Yang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Jie Yu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
4
|
Maltby VE, Lea RA, Burnard S, Xavier A, Van Cao T, White N, Kennedy D, Groen K, Sanders KA, Seeto R, Bray S, Gresle M, Laverick L, Butzkueven H, Scott RJ, Lechner-Scott J. Epigenetic differences at the HTR2A locus in progressive multiple sclerosis patients. Sci Rep 2020; 10:22217. [PMID: 33335118 PMCID: PMC7747721 DOI: 10.1038/s41598-020-78809-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/22/2020] [Indexed: 11/30/2022] Open
Abstract
The pathology of progressive multiple sclerosis (MS) is poorly understood. We have previously assessed DNA methylation in the CD4+ T cells of relapsing–remitting (RR) MS patients compared to healthy controls and identified differentially methylated regions (DMRs) in HLA-DRB1 and RNF39. This study aimed to investigate the DNA methylation profiles of the CD4+ T cells of progressive MS patients. DNA methylation was measured in two separate case/control cohorts using the Illumina 450K/EPIC arrays and data was analysed with the Chip Analysis Methylation Pipeline (ChAMP). Single nucleotide polymorphisms (SNPs) were assessed using the Illumina Human OmniExpress24 arrays and analysed using PLINK. Expression was assessed using the Illumina HT12 array and analysed in R using a combination of Limma and Illuminaio. We identified three DMRs at HTR2A, SLC17A9 and HDAC4 that were consistent across both cohorts. The DMR at HTR2A is located within the bounds of a haplotype block; however, the DMR remained significant after accounting for SNPs in the region. No expression changes were detected in any DMRs. HTR2A is differentially methylated in progressive MS independent of genotype. This differential methylation is not evident in RRMS, making it a potential biomarker of progressive disease.
Collapse
Affiliation(s)
- Vicki E Maltby
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Rodney A Lea
- Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.,Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Sean Burnard
- Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Alexandre Xavier
- Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Thao Van Cao
- Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Nicole White
- Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Daniel Kennedy
- Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Kira Groen
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Katherine A Sanders
- Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.,Centre for Anatomical and Human Sciences, Hull York Medical School, Hull, UK
| | - Rebecca Seeto
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Samara Bray
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Melissa Gresle
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.,Royal Melbourne Hospital, Melbourne, VIC, Australia.,MS and Neuroimmunology Unit, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louise Laverick
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.,Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Alfred Hospital, Melbourne, VIC, Australia.,MS and Neuroimmunology Unit, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia.,Division of Molecular Genetics, Pathology North, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia.,Centre for Cancer Research, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia. .,Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
5
|
Saito MT, Mofatto LS, Albiero ML, Casati MZ, Sallum EA, Nociti Junior FH, SilvÉrio KG. Transcriptome profile of highly osteoblastic/cementoblastic periodontal ligament cell clones. J Appl Oral Sci 2020; 28:e20200242. [PMID: 33111882 PMCID: PMC9648949 DOI: 10.1590/1678-7757-2020-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/09/2020] [Indexed: 11/23/2022] Open
Abstract
Heterogeneous cell populations of osteo/cementoblastic (O/C) or fibroblastic phenotypes constitute the periodontal dental ligament (PDL). A better understanding of these PDL cell subpopulations is essential to propose regenerative approaches based on a sound biological rationale.
Collapse
Affiliation(s)
- Miki Taketomi Saito
- Universidade Federal do Pará, Instituto de Ciências da Saude, Departmento de Saúde Pública, Belém, Pará, Brasil
| | - Luciana Souto Mofatto
- Universidade Estadual de Campinas, Instituto de Biologia (UNICAMP), Departamento de Genética e Evolução, Microbiologia e Imunologia, Laboratório de Genônica e Expressão, Campinas, SP, Brasil
| | - Mayra Laino Albiero
- Universidade de Sorocaba, (UNISO), Departmento de Periodontia, Sorocaba, SP, Brasil
| | - Márcio Zafallon Casati
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba, Departmento de Prótese e Periodontia, Divisão de Periodontia, Piracicaba, SP, Brasil
| | - Enilson Antonio Sallum
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba, Departmento de Prótese e Periodontia, Divisão de Periodontia, Piracicaba, SP, Brasil
| | - Francisco Humberto Nociti Junior
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba, Departmento de Prótese e Periodontia, Divisão de Periodontia, Piracicaba, SP, Brasil
| | - Karina Gonzales SilvÉrio
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba, Departmento de Prótese e Periodontia, Divisão de Periodontia, Piracicaba, SP, Brasil
| |
Collapse
|
6
|
Schwanke S, Jenssen J, Eipert P, Schmitt O. Towards Differential Connectomics with NeuroVIISAS. Neuroinformatics 2019; 17:163-179. [PMID: 30014279 DOI: 10.1007/s12021-018-9389-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The comparison of connectomes is an essential step to identify changes in structural and functional neuronal networks. However, the connectomes themselves as well as the comparisons of connectomes could be manifold. In most applications, comparisons of connectomes are applied to specific sets of data. In many studies collections of scripts are applied optimized for certain species (non-generic approaches) or diseases (control versus disease group connectomes). These collections of scripts have a limited functionality which do not support functional and topographic mappings of connectomes (hemispherical asymmetries, peripheral nervous system). The platform-independent and generic neuroVIISAS framework is built to circumvent limitations that come with variants of nomenclatures, connectivity lists and connectional hierarchies as well as restrictions to structural connectome analyses. A new analytical module is introduced into the framework to compare different types of connectomes and different representations of the same connectome within a unique software environment. As an example a differential analysis of the partial connectome of the laboratory rat that is based on virus tract tracing with the same regions of non-virus tract tracing has been performed. A relatively large connectional coherence between the two different techniques was found. However, some detected connections are described by virus tract-tracing only.
Collapse
Affiliation(s)
- Sebastian Schwanke
- Department of Anatomy, University of Rostock, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Jörg Jenssen
- Department of Anatomy, University of Rostock, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Peter Eipert
- Department of Anatomy, University of Rostock, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Oliver Schmitt
- Department of Anatomy, University of Rostock, Gertrudenstr. 9, 18057, Rostock, Germany.
| |
Collapse
|