1
|
Taskova M, Uhd J, Miotke L, Kubit M, Bell J, Ji HP, Astakhova K. Tandem Oligonucleotide Probe Annealing and Elongation To Discriminate Viral Sequence. Anal Chem 2017; 89:4363-4366. [PMID: 28382823 DOI: 10.1021/acs.analchem.7b00646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New approaches for genomic DNA/RNA detection are in high demand in order to provide controls for existing enzymatic technologies and to create alternatives for emerging applications. In particular, there is an unmet need in rapid, reliable detection of short RNA regions which could open up new opportunities in transcriptome analysis, virology, and other fields. Herein, we report for the first time a "click" chemistry approach to oligonucleotide probe elongation as a novel approach to specifically detect a viral sequence. We hybridized a library of short, terminally labeled probes to Ebola virus RNA followed by click assembly and analysis of the read sequence by various techniques. As we demonstrate in this paper, using our new approach, a viral RNA sequence can be detected in less than 2 h without the need for cDNA synthesis or any other enzymatic reactions and with a sensitivity of <10 pM target RNA.
Collapse
Affiliation(s)
- Maria Taskova
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - Jesper Uhd
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - Laura Miotke
- Division of Oncology, Department of Medicine, Stanford University , 269 Campus Drive, Stanford, California 94305, United States
| | - Matthew Kubit
- Division of Oncology, Department of Medicine, Stanford University , 269 Campus Drive, Stanford, California 94305, United States
| | - John Bell
- Stanford Genome Technology Center, Stanford University , 3165 Porter Drive, Palo Alto, California 94304, United States
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University , 269 Campus Drive, Stanford, California 94305, United States.,Stanford Genome Technology Center, Stanford University , 3165 Porter Drive, Palo Alto, California 94304, United States
| | - Kira Astakhova
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
2
|
Wang X, Li Y, Zhang J, Zhang Q, Liu X, Li Z. De novo characterization of microRNAs in oriental fruit moth Grapholita molesta and selection of reference genes for normalization of microRNA expression. PLoS One 2017; 12:e0171120. [PMID: 28158242 PMCID: PMC5291412 DOI: 10.1371/journal.pone.0171120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/16/2017] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous non-coding small RNAs that have critical regulatory functions in almost all known biological processes at the post-transcriptional level in a variety of organisms. The oriental fruit moth Grapholita molesta is one of the most serious pests in orchards worldwide and threatens the production of Rosacea fruits. In this study, a de novo small RNA library constructed from mixed stages of G. molesta was sequenced through Illumina sequencing platform and a total of 536 mature miRNAs consisting of 291 conserved and 245 novel miRNAs were identified. Most of the conserved and novel miRNAs were detected with moderate abundance. The miRNAs in the same cluster normally showed correlated expressional profiles. A comparative analysis of the 79 conserved miRNA families within 31 arthropod species indicated that these miRNA families were more conserved among insects and within orders of closer phylogenetic relationships. The KEGG pathway analysis and network prediction of target genes indicated that the complex composed of miRNAs, clock genes and developmental regulation genes may play vital roles to regulate the developmental circadian rhythm of G. molesta. Furthermore, based on the sRNA library of G. molesta, suitable reference genes were selected and validated for study of miRNA transcriptional profile in G. molesta under two biotic and six abiotic experimental conditions. This study systematically documented the miRNA profile in G. molesta, which could lay a foundation for further understanding of the regulatory roles of miRNAs in the development and metabolism in this pest and might also suggest clues to the development of genetic-based techniques for agricultural pest control.
Collapse
Affiliation(s)
- Xiu Wang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yisong Li
- Department of Entomology, China Agricultural University, Beijing, China
- Department of Plant Protection, Shihezi University, Shihezi, China
| | - Jing Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing, China
- * E-mail: (ZL); (XXL)
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing, China
- * E-mail: (ZL); (XXL)
| |
Collapse
|