1
|
Collet BC, Davis DR. Mechanisms of Cardiac Repair in Cell Therapy. Heart Lung Circ 2023; 32:825-835. [PMID: 37031061 DOI: 10.1016/j.hlc.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/10/2022] [Accepted: 01/04/2023] [Indexed: 04/08/2023]
Abstract
Heart failure is an important cause of morbidity and mortality. More than 20 years ago, special interest was drawn to cell therapy as a means of restoring damaged hearts to working condition. But progress has not been straightforward as many of our initial assumptions turned out to be wrong. In this review, we critically examine the last 20 years of progress in cardiac cell therapy and focus on several of the popular beliefs surrounding cell therapy to illustrate the mechanisms involved in restoring heart function after cardiac injury. Are they true or false?
Collapse
Affiliation(s)
- Bérénice C Collet
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
2
|
Electrophysiological engineering of heart-derived cells with calcium-dependent potassium channels improves cell therapy efficacy for cardioprotection. Nat Commun 2021; 12:4963. [PMID: 34400625 PMCID: PMC8368210 DOI: 10.1038/s41467-021-25180-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
We have shown that calcium-activated potassium (KCa)-channels regulate fundamental progenitor-cell functions, including proliferation, but their contribution to cell-therapy effectiveness is unknown. Here, we test the participation of KCa-channels in human heart explant-derived cell (EDC) physiology and therapeutic potential. TRAM34-sensitive KCa3.1-channels, encoded by the KCNN4 gene, are exclusively expressed in therapeutically bioactive EDC subfractions and maintain a strongly polarized resting potential; whereas therapeutically inert EDCs lack KCa3.1 channels and exhibit depolarized resting potentials. Somatic gene transfer of KCNN4 results in membrane hyperpolarization and increases intracellular [Ca2+], which boosts cell-proliferation and the production of pro-healing cytokines/nanoparticles. Intramyocardial injection of EDCs after KCNN4-gene overexpression markedly increases the salutary effects of EDCs on cardiac function, viable myocardium and peri-infarct neovascularization in a well-established murine model of ischemic cardiomyopathy. Thus, electrophysiological engineering provides a potentially valuable strategy to improve the therapeutic value of progenitor cells for cardioprotection and possibly other indications. Strategies to improve the function of damaged hearts with progenitor cells have stalled. Here, the authors show that gene transfer of a calcium-dependent potassium channel enhances the functional properties and ability of explant-derived cells to improve heart function after a heart attack.
Collapse
|
3
|
Echocardiography-guided percutaneous left ventricular intracavitary injection as a cell delivery approach in infarcted mice. Mol Cell Biochem 2021; 476:2135-2148. [PMID: 33547546 DOI: 10.1007/s11010-021-04077-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/22/2021] [Indexed: 12/31/2022]
Abstract
In the field of cell therapy for heart disease, a new paradigm of repeated dosing of cells has recently emerged. However, the lack of a repeatable cell delivery method in preclinical studies in rodents is a major obstacle to investigating this paradigm. We have established and standardized a method of echocardiography-guided percutaneous left ventricular intracavitary injection (echo-guided LV injection) as a cell delivery approach in infarcted mice. Here, we describe the method in detail and address several important issues regarding it. First, by integrating anatomical and echocardiographic considerations, we have established strategies to determine a safe anatomical window for injection in infarcted mice. Second, we summarize our experience with this method (734 injections). The overall survival rate was 91.4%. Third, we examined the efficacy of this cell delivery approach. Compared with vehicle treatment, cardiac mesenchymal cells (CMCs) delivered via this method improved cardiac function assessed both echocardiographically and hemodynamically. Furthermore, repeated injections of CMCs via this method yielded greater cardiac function improvement than single-dose administration. Echo-guided LV injection is a feasible, reproducible, relatively less invasive and effective delivery method for cell therapy in murine models of heart disease. It is an important approach that could move the field of cell therapy forward, especially with regard to repeated cell administrations.
Collapse
|
4
|
Pupkaite J, Sedlakova V, Eren Cimenci C, Bak M, McLaughlin S, Ruel M, Alarcon EI, Suuronen EJ. Delivering More of an Injectable Human Recombinant Collagen III Hydrogel Does Not Improve Its Therapeutic Efficacy for Treating Myocardial Infarction. ACS Biomater Sci Eng 2020; 6:4256-4265. [PMID: 33463355 DOI: 10.1021/acsbiomaterials.0c00418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Injectable hydrogels are a promising method to enhance repair in the heart after myocardial infarction (MI). However, few studies have compared different strategies for the application of biomaterial treatments. In this study, we use a clinically relevant mouse MI model to assess the therapeutic efficacy of different treatment protocols for intramyocardial injection of a recombinant human collagen III (rHCIII) thermoresponsive hydrogel. Comparing a single hydrogel injection at an early time point (3 h) versus injections at multiple time points (3 h, 1 week, and 2 weeks) post-MI revealed that the single injection group led to superior cardiac function, reduced scar size and inflammation, and increased vascularization. Omitting the 3 h time point and delivering the hydrogel at 1 and 2 weeks post-MI led to poorer cardiac function. The positive effects of the single time point injection (3 h) on scar size and vascular density were lost when the hydrogel's collagen concentration was increased from 1% to 2%, and it did not confer any additional functional improvement. This study shows that early treatment with a rHCIII hydrogel can improve cardiac function post-MI but that injecting more rHCIII (by increased concentration or more over time) can reduce its efficacy, thus highlighting the importance of investigating optimal treatment strategies of biomaterial therapy for MI.
Collapse
Affiliation(s)
- Justina Pupkaite
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada.,Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping 582 25, Sweden
| | - Veronika Sedlakova
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada
| | - Cagla Eren Cimenci
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| | - Madison Bak
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| | - Sarah McLaughlin
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| | - Marc Ruel
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| | - Erik J Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| |
Collapse
|
5
|
Abstract
INTRODUCTION Over the past decade, it has become clear that long-term engraftment of any ex vivo expanded cell product transplanted into injured myocardium is modest and all therapeutic regeneration is mediated by stimulation of endogenous repair rather than differentiation of transplanted cells into working myocardium. Given that increasing the retention of transplanted cells boosts myocardial function, focus on the fundamental mechanisms limiting retention and survival of transplanted cells may enable strategies to help to restore normal cardiac function. Areas covered: This review outlines the challenges confronting cardiac engraftment of ex vivo expanded cells and explores means of enhancing cell-mediated repair of injured myocardium. Expert opinion: Stem cell therapy has already come a long way in terms of regenerating damaged hearts though the poor retention of transplanted cells limits the full potential of truly cardiotrophic cell products. Multifaceted strategies directed towards fundamental mechanisms limiting the long-term survival of transplanted cells will be needed to enhance transplanted cell retention and cell-mediated repair of damaged myocardium for cardiac cell therapy to reach its full potential.
Collapse
Affiliation(s)
| | - Darryl R Davis
- a University of Ottawa Heart Institute , Ottawa , ON , Canada
| |
Collapse
|