1
|
Zhao Y, Yang L, Chen Y, Zhang X, Li J, Liang D, Jiang S, Gao J, Meng Y. A Comparative Analysis of Bombyx mori (Lepidoptera: Bombycidae) β-fructofuranosidase Homologs Reveals Different Post-Translational Regulations in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). INSECTS 2022; 13:insects13050410. [PMID: 35621746 PMCID: PMC9143633 DOI: 10.3390/insects13050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary The β-fructofuranosidase (β-FFase) encoding gene BmSuc1 regulates the glycometabolism of silkworm larvae, and it participates in the resistance of mulberry alkaloids. However, there is no molecular or biochemical information available about the mulberry pest Glyphodespyloalis Walker β-FFase homologs. In this paper, we have obtained five β-FFase homologous genes in G. pyloalis and characterized the expression and the localization of GpSUC1a in the midgut. The β-FFase activity in the midgut of G. pyloalis larvae and GpSUC1a were both confirmed, while recombinant GpSUC1a displayed little activity as compared with the higher activity of BmSUC1. Some putative N-glycosylation sites were found in GpSUC1a but none in BmSUC1, while there was more methylation in BmSUC1 than in GpSUC1a. The results indicate that such post-translational modifications (PTMs) are differentially supporting that β-FFase are active in these two mulberry feeding caterpillars, and the activation of GpSUC1a may be controlled by a more complex post-translational regulatory system in G. pyloalis larvae. This is the first report on the characterization of β-FFase genes from G. pyloalis and the first comparison of expression regulation between two mulberry feeding insects B. mori and G. pyloalis. Moreover, this research may provide new ideas for the management of mulberry borers. Abstract The silk-spinning and Lepidopteran model insect Bombyx mori (Bombycidae) is a mulberry specialist. The BmSuc1 gene is the first β-fructofuranosidase (β-FFase) encoding gene identified in animals, and β-FFase acts as an essential sucrase for glycometabolism modulation in the silkworm larvae, involved in resistance to mulberry alkaloids. Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is an important mulberry pest leading to heavy economic loss of sericulture. However, no molecular or biochemical information is available about G. pyloalis β-FFase homologs. In this study, five β-FFase homologous genes in G. pyloalis were obtained. The genes GpSuc1a and GpSuc2c were expressed in the midgut; GpSuc2c encodes a truncated polypeptide. The expression and the localization of GpSUC1a in the midgut was characterized. Whereas recombinant GpSUC1a expressed in both Escherichia coli and BmN cells displayed little activity as compared with higher activity of BmSUC1, β-FFase activity in the larval midgut of G. pyloalis and GpSUC1a purified from the midgut were both confirmed. The data suggested that the activation of GpSUC1a is probably controlled by a more complicated post-translational regulation system in G. pyloalis larvae than that of BmSUC1 in B. mori. To study post-translational modifications (PTMs), GpSUC1a and BmSUC1 were purified from larval midguts using immunoprecipitation and subjected to LC-MS to perform PTMs analysis. Some putative N-glycosylated sites were found in GpSUC1a but none in BmSUC1, while there was more methylation in BmSUC1 than in GpSUC1a, indicating that such PTMs were supporting the differential β-FFases activities in these two mulberry feeding caterpillars.
Collapse
Affiliation(s)
- Yue Zhao
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Liangli Yang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Yu Chen
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
| | - Xinwei Zhang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Department of Pathology, Henan Provincial People’s Hospital, 7 Weiwu Road, Zhengzhou 450003, China
| | - Jing Li
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
| | - Dan Liang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Song Jiang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Junshan Gao
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
- Correspondence: ; Tel./Fax: +86-551-65786967
| |
Collapse
|
2
|
Alipour H, Raz A, Dinparast Djadid N, Zakeri S. Expression of a New Recombinant Collagenase Protein of Lucilia Sericata in SF9 Insect Cell as a Potential Method for Wound Healing. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e2429. [PMID: 32671126 PMCID: PMC7357693 DOI: 10.30498/ijb.2019.92707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Today, the use of maggot therapy has become widespread due to the increase in chronic ulcers in the world. The recombinant production of secreted enzymes from these larvae is a novel non-invasive method for the treatment of chronic ulcers. Lucilia Sericata (L. sericata) collagenase (MMP-1) has been expressed in insect cells. Collagenase is an enzyme that is widely used in clinical therapy and industry. It has been indicated that collagenase is expressed and secreted in salivary glands of L. sericata while using for maggot debridement therapy. OBJECTIVES In the present study we decided to produce the recombinant form of collagenase enzyme in Spodoptera frugiperda (SF9) insect cells using the baculovirus expression system (Bac-to-Bac). MATERIALS AND METHODS cloned the coding sequences (residues 494-1705) of L. sericata collagenase into the pFastBacHTA as donor plasmid. After transposition in the bacmid of DH10Bac host, the bacmid was transfected into the Sf9 cell line, then the expressed recombinant collagenase (MMP-1) was purified using the Ni-NTA agarose. RESULTS The recombinant protein was verified by Western blotting. Furthermore, the biological activity of purified protein was measured in the presence of its specific substrate and its inhibitor, which was 67 IU.mL-1 based on our results, it was revealed that the characterized gene in our previous study codes L. sericata collagenesa enzyme. CONCLUSION Considering to the broad applications of collagenase in medical sciences, for the first time, we cloned the L. sericata collagenase (MMP-1) gene into the insect cell line to establish a method for the expression and purification of L. sericata collagenase (MMP-1). The result help for preparing and designing a safe and versatile recombinant drug in future.
Collapse
Affiliation(s)
- Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|